tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Uremia D014511 33 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Nocardia Infections D009617 6 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Sarcoidosis D012507 13 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Postoperative Complications D011183 5 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Osteonecrosis D010020 5 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Kim EJ et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. 2014 Am. J. Transplant. pmid:24354871
Frassetto LA et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. 2007 Am. J. Transplant. pmid:17949460
Djamali A et al. Nox2 is a mediator of chronic CsA nephrotoxicity. 2012 Am. J. Transplant. pmid:22568654
Cavadas PC et al. Bilateral trans-humeral arm transplantation: result at 2 years. 2011 Am. J. Transplant. pmid:21521475
Xu H et al. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. 2014 Am. J. Transplant. pmid:24472192
Qazi Y et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. 2017 Am. J. Transplant. pmid:27775865
de Fontbrune FS et al. Veno-occlusive disease of the liver after lung transplantation. 2007 Am. J. Transplant. pmid:17697264
Coghill AE et al. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study Within the Skin Cancer after Organ Transplant (SCOT) Cohort. 2016 Am. J. Transplant. pmid:26824445
Zafrani L et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. 2009 Am. J. Transplant. pmid:19538494
Krämer BK et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. 2010 Am. J. Transplant. pmid:20840480
Trunečka P et al. Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. 2010 Am. J. Transplant. pmid:20840481
Ekberg H et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. 2009 Am. J. Transplant. pmid:19563339
Wang Q et al. Biodegradable microsphere-loaded tacrolimus enhanced the effect on mice islet allograft and reduced the adverse effect on insulin secretion. 2004 Am. J. Transplant. pmid:15084166
Schubert M et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. 2004 Am. J. Transplant. pmid:15084173
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Mehra MR et al. Immunosuppression in cardiac transplantation: science, common sense and the heart of the matter. 2006 Am. J. Transplant. pmid:16686745
Grimm M et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients--a large European trial. 2006 Am. J. Transplant. pmid:16686762
Budde K et al. Novel once-daily extended-release tacrolimus (LCPT) versus twice-daily tacrolimus in de novo kidney transplants: one-year results of Phase III, double-blind, randomized trial. 2014 Am. J. Transplant. pmid:25278376
Sis B et al. Reproducibility studies on arteriolar hyaline thickening scoring in calcineurin inhibitor-treated renal allograft recipients. 2006 Am. J. Transplant. pmid:16686769
Borrows R et al. Steroid sparing with tacrolimus and mycophenolate mofetil in renal transplantation. 2004 Am. J. Transplant. pmid:15476485
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Budde K et al. Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. 2010 Am. J. Transplant. pmid:20121745
Bouamar R et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(†). 2013 Am. J. Transplant. pmid:23480233
Busque S et al. The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. 2011 Am. J. Transplant. pmid:21943027
Artz MA et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15147428
Hamdy AF et al. Comparison of sirolimus with low-dose tacrolimus versus sirolimus-based calcineurin inhibitor-free regimen in live donor renal transplantation. 2005 Am. J. Transplant. pmid:16162204
Kaufman DB et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction--long-term results. 2005 Am. J. Transplant. pmid:16162205
Schwarz A et al. Polyoma virus nephropathy in native kidneys after lung transplantation. 2005 Am. J. Transplant. pmid:16162212
Flechner SM et al. Allotransplantation of cryopreserved parathyroid tissue for severe hypocalcemia in a renal transplant recipient. 2010 Am. J. Transplant. pmid:20883540
Benítez CE et al. ATG-Fresenius treatment and low-dose tacrolimus: results of a randomized controlled trial in liver transplantation. 2010 Am. J. Transplant. pmid:20883560
Böger CA et al. Reverse diastolic intrarenal flow due to calcineurin inhibitor (CNI) toxicity. 2006 Am. J. Transplant. pmid:16889550
Shemesh E et al. The Medication Level Variability Index (MLVI) Predicts Poor Liver Transplant Outcomes: A Prospective Multi-Site Study. 2017 Am. J. Transplant. pmid:28321975
Tan HP et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. 2006 Am. J. Transplant. pmid:16889606
Hesselink DA et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. 2005 Am. J. Transplant. pmid:15816878
Byrne GW et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function. 2005 Am. J. Transplant. pmid:15816881
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Schold JD The burden of proof in the design of early phase clinical trials. 2013 Am. J. Transplant. pmid:23802723
Chisholm-Burns MA et al. Improving outcomes of renal transplant recipients with behavioral adherence contracts: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23819827
Muthusamy AS et al. Alemtuzumab induction and steroid-free maintenance immunosuppression in pancreas transplantation. 2008 Am. J. Transplant. pmid:18828772
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Pescovitz MD et al. A randomized, double-blind, pharmacokinetic study of oral maribavir with tacrolimus in stable renal transplant recipients. 2009 Am. J. Transplant. pmid:19663892
Tydén G et al. ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab. 2005 Am. J. Transplant. pmid:15636623
Woodle ES et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. 2005 Am. J. Transplant. pmid:15636625
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Diaz-Siso JR et al. Initial experience of dual maintenance immunosuppression with steroid withdrawal in vascular composite tissue allotransplantation. 2015 Am. J. Transplant. pmid:25777324
Rodríguez-Perálvarez M et al. Tacrolimus exposure after liver transplantation in randomized controlled trials: too much for too long. 2013 Am. J. Transplant. pmid:23621166
Gao R et al. Effects of immunosuppressive drugs on in vitro neogenesis of human islets: mycophenolate mofetil inhibits the proliferation of ductal cells. 2007 Am. J. Transplant. pmid:17391142
Vanhove T et al. Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients. 2017 Am. J. Transplant. pmid:28224698
Rodriguez-Rodriguez AE et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. 2013 Am. J. Transplant. pmid:23651473
Klintmalm GB et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. 2014 Am. J. Transplant. pmid:25041339
Neuberger JM et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the 'ReSpECT' study. 2009 Am. J. Transplant. pmid:19120077
Momper JD et al. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. 2011 Am. J. Transplant. pmid:21714845
Tan HP et al. Two hundred living donor kidney transplantations under alemtuzumab induction and tacrolimus monotherapy: 3-year follow-up. 2009 Am. J. Transplant. pmid:19120078
TruneÄŒka P et al. Renal Function in De Novo Liver Transplant Recipients Receiving Different Prolonged-Release Tacrolimus Regimens-The DIAMOND Study. 2015 Am. J. Transplant. pmid:25707487
Ashman N et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. 2009 Am. J. Transplant. pmid:19120084
Adam R et al. Improved survival in liver transplant recipients receiving prolonged-release tacrolimus in the European Liver Transplant Registry. 2015 Am. J. Transplant. pmid:25703527
Asrani SK and O'Leary JG Can one pill a day keep rejection away? 2015 Am. J. Transplant. pmid:25703394
Lemahieu WP et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. 2004 Am. J. Transplant. pmid:15307840
Oetting WS et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. 2016 Am. J. Transplant. pmid:26485092
Vongwiwatana A et al. Peritubular capillary changes and C4d deposits are associated with transplant glomerulopathy but not IgA nephropathy. 2004 Am. J. Transplant. pmid:14678043
Bressollette-Bodin C et al. A prospective longitudinal study of BK virus infection in 104 renal transplant recipients. 2005 Am. J. Transplant. pmid:15996241
Badri P et al. Pharmacokinetics and dose recommendations for cyclosporine and tacrolimus when coadministered with ABT-450, ombitasvir, and dasabuvir. 2015 Am. J. Transplant. pmid:25708713
Shihab F et al. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. 2017 Am. J. Transplant. pmid:28141897
Luther P and Baldwin D Pioglitazone in the management of diabetes mellitus after transplantation. 2004 Am. J. Transplant. pmid:15575920
Dahm F et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15575921
O'Connell PJ et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. 2013 Am. J. Transplant. pmid:23668890
Russ GR et al. Efficacy of sotrastaurin plus tacrolimus after de novo kidney transplantation: randomized, phase II trial results. 2013 Am. J. Transplant. pmid:23668931
Rodríguez-Perálvarez M et al. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. 2012 Am. J. Transplant. pmid:22703529
Luan FL et al. Comparative risk of impaired glucose metabolism associated with cyclosporine versus tacrolimus in the late posttransplant period. 2008 Am. J. Transplant. pmid:18786231
Chen G et al. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys. 2007 Am. J. Transplant. pmid:17227555
Woywodt A et al. Different preparations of tacrolimus and medication errors. 2008 Am. J. Transplant. pmid:18786238
Servais A et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. 2011 Am. J. Transplant. pmid:21672152
Senior PA et al. Changes in renal function after clinical islet transplantation: four-year observational study. 2007 Am. J. Transplant. pmid:17227560
Carenco C et al. Tacrolimus and the risk of solid cancers after liver transplant: a dose effect relationship. 2015 Am. J. Transplant. pmid:25648361
Levi Z et al. Switching from tacrolimus to sirolimus halts the appearance of new sebaceous neoplasms in Muir-Torre syndrome. 2007 Am. J. Transplant. pmid:17229076
Mulay AV et al. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. 2009 Am. J. Transplant. pmid:19353768
Ogawa T et al. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. 2007 Am. J. Transplant. pmid:17229077
Miriuka SG et al. mTOR inhibition induces endothelial progenitor cell death. 2006 Am. J. Transplant. pmid:16796720
Bourdeaux C et al. Living-related versus deceased donor pediatric liver transplantation: a multivariate analysis of technical and immunological complications in 235 recipients. 2007 Am. J. Transplant. pmid:17173657
Mazariegos GV et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. 2005 Am. J. Transplant. pmid:15643991
Bahra M et al. MMF and calcineurin taper in recurrent hepatitis C after liver transplantation: impact on histological course. 2005 Am. J. Transplant. pmid:15644002
Montgomery SP et al. Efficacy and toxicity of a protocol using sirolimus, tacrolimus and daclizumab in a nonhuman primate renal allotransplant model. 2002 Am. J. Transplant. pmid:12118862
Ahsan N et al. Limited dose monoclonal IL-2R antibody induction protocol after primary kidney transplantation. 2002 Am. J. Transplant. pmid:12118902
Rostaing L et al. Alefacept combined with tacrolimus, mycophenolate mofetil and steroids in de novo kidney transplantation: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23730730
van Hooff JP et al. Glucose metabolic disorder after transplantation. 2007 Am. J. Transplant. pmid:17511670
Heffron TG et al. Once-daily tacrolimus extended-release formulation: 1-year post-conversion in stable pediatric liver transplant recipients. 2007 Am. J. Transplant. pmid:17511684
Moench C et al. Tacrolimus monotherapy without steroids after liver transplantation--a prospective randomized double-blinded placebo-controlled trial. 2007 Am. J. Transplant. pmid:17511685
Levy G et al. REFINE: a randomized trial comparing cyclosporine A and tacrolimus on fibrosis after liver transplantation for hepatitis C. 2014 Am. J. Transplant. pmid:24456049
Triñanes J et al. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. 2017 Am. J. Transplant. pmid:28432716
Posselt AM et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. 2010 Am. J. Transplant. pmid:20659093
Ciancio G et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. 2012 Am. J. Transplant. pmid:22946986
Jacobson PA et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. 2012 Am. J. Transplant. pmid:22947444
De Simone P et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. 2012 Am. J. Transplant. pmid:22882750
Echeverri GJ et al. Endoscopic gastric submucosal transplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. 2009 Am. J. Transplant. pmid:19775318
Gaston RS et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. 2009 Am. J. Transplant. pmid:19459794
Pallet N et al. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype. 2016 Am. J. Transplant. pmid:26990694
Miller LW Cardiovascular toxicities of immunosuppressive agents. 2002 Am. J. Transplant. pmid:12392286
Brennan DC et al. Incidence of BK with tacrolimus versus cyclosporine and impact of preemptive immunosuppression reduction. 2005 Am. J. Transplant. pmid:15707414