erythromycin

erythromycin is a lipid of Polyketides (PK) class. Erythromycin is associated with abnormalities such as Systemic Inflammatory Response Syndrome, Pneumonia, Infection, Pneumococcal Infections and Exanthema. The involved functions are known as Pharmacodynamics, Sterility, Agent, Drug Kinetics and Adjudication. Erythromycin often locates in Blood, peritoneal, Extracellular, Ribosomes and apicoplast. The associated genes with erythromycin are P4HTM gene, SLC33A1 gene, FAM3B gene, Operon and Homologous Gene. The related lipids are Hydroxytestosterones, Steroids, Propionate, Mycolic Acids and campesterol. The related experimental models are Mouse Model and Knock-out.

Cross Reference

Introduction

To understand associated biological information of erythromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with erythromycin?

erythromycin is suspected in Pneumonia, Infection, Gonorrhea, Cystic Fibrosis, Respiratory Tract Infections, Influenza and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with erythromycin

MeSH term MeSH ID Detail
Hoarseness D006685 2 associated lipids
Occupational Injuries D060051 1 associated lipids
Per page 10 20 50 100 | Total 442

PubChem Associated disorders and diseases

What pathways are associated with erythromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with erythromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with erythromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with erythromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with erythromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with erythromycin?

Mouse Model

Mouse Model are used in the study 'In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis.' (Falzari K et al., 2005) and Mouse Model are used in the study 'Activity of ABT-773 against Mycobacterium avium complex in the beige mouse model.' (Cynamon MH et al., 2000).

Knock-out

Knock-out are used in the study 'Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening.' (McLaughlin LA et al., 2008).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with erythromycin

Download all related citations
Per page 10 20 50 100 | Total 13660
Authors Title Published Journal PubMed Link
Pérez RA et al. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry. 2017 J Pharm Biomed Anal pmid:28858671
Wozniak A et al. Importance of adhesins in the recurrence of pharyngeal infections caused by Streptococcus pyogenes. 2017 J. Med. Microbiol. pmid:28463664
Pavlova A et al. Toward the rational design of macrolide antibiotics to combat resistance. 2017 Chem Biol Drug Des pmid:28419786
Numanović F et al. Presence and resistance of Streptococcus agalactiae in vaginal specimens of pregnant and adult non-pregnant women and association with other aerobic bacteria. 2017 Med Glas (Zenica) pmid:27917849
Lim SK et al. Macrolide resistance mechanisms and virulence factors in erythromycin-resistant Campylobacter species isolated from chicken and swine feces and carcasses. 2017 J. Vet. Med. Sci. pmid:27593510
Wekselman I et al. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. 2017 Structure pmid:28689968
Truong-Bolduc QC et al. Transcriptional Regulator TetR21 Controls the Expression of the Staphylococcus aureus LmrS Efflux Pump. 2017 Antimicrob. Agents Chemother. pmid:28584148
Blackwell GA and Hall RM The Determinant and the Genes in Acinetobacter Plasmids Are Each Part of Discrete Modules Flanked by Inversely Oriented p (XerC-XerD) Sites. 2017 Antimicrob. Agents Chemother. pmid:28533235
Duelge KJ et al. An LC-MS/MS method for the determination of antibiotic residues in distillers grains. 2017 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:28415016
Peng Z et al. Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale. 2017 Microbiologyopen pmid:28799224