erythromycin

erythromycin is a lipid of Polyketides (PK) class. Erythromycin is associated with abnormalities such as Systemic Inflammatory Response Syndrome, Pneumonia, Infection, Pneumococcal Infections and Exanthema. The involved functions are known as Pharmacodynamics, Sterility, Agent, Drug Kinetics and Adjudication. Erythromycin often locates in Blood, peritoneal, Extracellular, Ribosomes and apicoplast. The associated genes with erythromycin are P4HTM gene, SLC33A1 gene, FAM3B gene, Operon and Homologous Gene. The related lipids are Hydroxytestosterones, Steroids, Propionate, Mycolic Acids and campesterol. The related experimental models are Mouse Model and Knock-out.

Cross Reference

Introduction

To understand associated biological information of erythromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with erythromycin?

erythromycin is suspected in Pneumonia, Infection, Gonorrhea, Cystic Fibrosis, Respiratory Tract Infections, Influenza and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with erythromycin

MeSH term MeSH ID Detail
Liver Cirrhosis, Biliary D008105 12 associated lipids
Liver Diseases D008107 31 associated lipids
Long QT Syndrome D008133 10 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Diseases, Obstructive D008173 10 associated lipids
Lung Neoplasms D008175 171 associated lipids
Lupus Erythematosus, Cutaneous D008178 2 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lyme Disease D008193 5 associated lipids
Lymphadenitis D008199 8 associated lipids
Lymphangitis D008205 4 associated lipids
Lymphogranuloma Venereum D008219 4 associated lipids
Mycetoma D008271 4 associated lipids
Marfan Syndrome D008382 2 associated lipids
Mastoiditis D008417 2 associated lipids
Maxillofacial Injuries D008446 1 associated lipids
Megacolon D008531 1 associated lipids
Meningitis, Haemophilus D008583 3 associated lipids
Meningitis, Listeria D008584 1 associated lipids
Microphthalmos D008850 1 associated lipids
Stomatognathic Diseases D009057 1 associated lipids
Multiple Myeloma D009101 13 associated lipids
Myasthenia Gravis D009157 5 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Mycoplasma Infections D009175 13 associated lipids
Mycoplasmatales Infections D009180 6 associated lipids
Myiasis D009198 1 associated lipids
Nasal Polyps D009298 26 associated lipids
Nasopharyngeal Diseases D009302 2 associated lipids
Nasopharyngitis D009304 2 associated lipids
Nausea D009325 7 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Nervous System Diseases D009422 37 associated lipids
Hereditary Sensory and Autonomic Neuropathies D009477 1 associated lipids
Neutropenia D009503 15 associated lipids
Nocardia Infections D009617 6 associated lipids
Obesity D009765 29 associated lipids
Endophthalmitis D009877 12 associated lipids
Ophthalmia Neonatorum D009878 1 associated lipids
Psittacosis D009956 4 associated lipids
Orthomyxoviridae Infections D009976 3 associated lipids
Osteitis D010000 10 associated lipids
Osteolysis D010014 8 associated lipids
Osteomyelitis D010019 10 associated lipids
Otitis D010031 5 associated lipids
Otitis Externa D010032 8 associated lipids
Otitis Media D010033 12 associated lipids
Otitis Media with Effusion D010034 9 associated lipids
Otitis Media, Suppurative D010035 4 associated lipids
Otorhinolaryngologic Diseases D010038 3 associated lipids
Per page 10 20 50 100 | Total 442

PubChem Associated disorders and diseases

What pathways are associated with erythromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with erythromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with erythromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with erythromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with erythromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with erythromycin?

Mouse Model

Mouse Model are used in the study 'In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis.' (Falzari K et al., 2005) and Mouse Model are used in the study 'Activity of ABT-773 against Mycobacterium avium complex in the beige mouse model.' (Cynamon MH et al., 2000).

Knock-out

Knock-out are used in the study 'Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening.' (McLaughlin LA et al., 2008).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with erythromycin

Download all related citations
Per page 10 20 50 100 | Total 13660
Authors Title Published Journal PubMed Link
Chen C et al. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. 2017 Bioprocess Biosyst Eng pmid:27709326
Ji W et al. Colonization prevalence and antibiotic susceptibility of Group B Streptococcus in pregnant women over a 6-year period in Dongguan, China. 2017 PLoS ONE pmid:28813477
Wang D et al. An analogous wood barrel theory to explain the occurrence of hormesis: A case study of sulfonamides and erythromycin on Escherichia coli growth. 2017 PLoS ONE pmid:28715457
Jia L et al. Synthesis and antibacterial evaluation of novel 11-O-carbamoyl clarithromycin ketolides. 2017 Bioorg. Med. Chem. Lett. pmid:28711353
Adhikari RP et al. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. 2017 BMC Infect. Dis. pmid:28693489
Wang HK et al. Clinical features and molecular characteristics of childhood community-associated methicillin-resistant Staphylococcus aureus infection in a medical center in northern Taiwan, 2012. 2017 BMC Infect. Dis. pmid:28679429
Haynes KM et al. Identification and Structure-Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. 2017 J. Med. Chem. pmid:28650638
Owen L et al. A Multifactorial Comparison of Ternary Combinations of Essential Oils in Topical Preparations to Current Antibiotic Prescription Therapies for the Control of Acne Vulgaris-Associated Bacteria. 2017 Phytother Res pmid:28124400
Chen K et al. Drug-resistance dynamics of Staphylococcus aureus between 2008 and 2014 at a tertiary teaching hospital, Jiangxi Province, China. 2017 BMC Infect. Dis. pmid:28122513
Berni E et al. Risk of cardiovascular events, arrhythmia and all-cause mortality associated with clarithromycin versus alternative antibiotics prescribed for respiratory tract infections: a retrospective cohort study. 2017 BMJ Open pmid:28115334
Wei L et al. Transformation of erythromycin during secondary effluent soil aquifer recharging: Removal contribution and degradation path. 2017 J Environ Sci (China) pmid:28115128
Koryakina I et al. Inversion of Extender Unit Selectivity in the Erythromycin Polyketide Synthase by Acyltransferase Domain Engineering. 2017 ACS Chem. Biol. pmid:28103677
Song KH et al. Characteristics of cefazolin inoculum effect-positive methicillin-susceptible staphylococcus aureus infection in a multicentre bacteraemia cohort. 2017 Eur. J. Clin. Microbiol. Infect. Dis. pmid:27714592
Kullin B et al. Toxin A-negative toxin B-positive ribotype 017 Clostridium difficile is the dominant strain type in patients with diarrhoea attending tuberculosis hospitals in Cape Town, South Africa. 2017 Eur. J. Clin. Microbiol. Infect. Dis. pmid:27696234
Austin BA and Fleischer AB The extinction of topical erythromycin therapy for acne vulgaris and concern for the future of topical clindamycin. 2017 J Dermatolog Treat pmid:27425633
Jakubů V et al. Trends in the Minimum Inhibitory Concentrations of Erythromycin, Clarithromycin, Azithromycin, Ciprofloxacin, and Trimethoprim/Sulfamethoxazole for Strains of Bordetella pertussis isolated in the Czech Republic in 1967-2015. 2017 Cent. Eur. J. Public Health pmid:29346850
Romero L et al. Macrolides for treatment of Haemophilus ducreyi infection in sexually active adults. 2017 Cochrane Database Syst Rev pmid:29226307
Naimi HM et al. Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan. 2017 BMC Infect. Dis. pmid:29187146
Svetlov MS et al. Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics. 2017 Proc. Natl. Acad. Sci. U.S.A. pmid:29229833
Wang B et al. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44. 2017 J. Dairy Sci. pmid:28987584