Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Abnormalities, Drug-Induced D000014 10 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Abscess D000038 13 associated lipids
Achondroplasia D000130 1 associated lipids
Acinetobacter Infections D000151 4 associated lipids
Acne Vulgaris D000152 35 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Actinomycetales Infections D000193 4 associated lipids
Agammaglobulinemia D000361 4 associated lipids
Airway Obstruction D000402 13 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Lu Y et al. Antibiotics Promote Escherichia coli-Pseudomonas aeruginosa Conjugation through Inhibiting Quorum Sensing. 2017 Antimicrob. Agents Chemother. pmid:28993333
Bingen E et al. Activity of telithromycin against penicillin-resistant Streptococcus pneumoniae isolates recovered from French children with invasive and noninvasive infections. 2003 Antimicrob. Agents Chemother. pmid:12821495
Pettus K et al. In vitro assessment of dual drug combinations to inhibit growth of Neisseria gonorrhoeae. 2015 Antimicrob. Agents Chemother. pmid:25624328
Retsema J et al. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. 1987 Antimicrob. Agents Chemother. pmid:2449865
Beringer P et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. 2005 Antimicrob. Agents Chemother. pmid:16304166
Koeva M et al. An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. 2017 Antimicrob. Agents Chemother. pmid:28923873
Saiz JC and Martín-Acebes MA Reply to Iannetta et al., "Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells". 2017 Antimicrob. Agents Chemother. pmid:28839084
Girard AE et al. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. 1987 Antimicrob. Agents Chemother. pmid:2830841
Iannetta M et al. Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells. 2017 Antimicrob. Agents Chemother. pmid:28839081
Chang HR and Pechère JC In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. 1988 Antimicrob. Agents Chemother. pmid:2837140
Feola DJ et al. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. 2010 Antimicrob. Agents Chemother. pmid:20231397
Cynamon MH and Klemens SP Activity of azithromycin against Mycobacterium avium infection in beige mice. 1992 Antimicrob. Agents Chemother. pmid:1329622
Seyama S et al. Amino Acid Substitution in the Major Multidrug Efflux Transporter Protein AcrB Contributes to Low Susceptibility to Azithromycin in Haemophilus influenzae. 2017 Antimicrob. Agents Chemother. pmid:28848006
Wildfeuer A et al. Uptake of azithromycin by various cells and its intracellular activity under in vivo conditions. 1996 Antimicrob. Agents Chemother. pmid:8787883
Tateda K et al. Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891128
Kemp MW et al. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. 2014 Antimicrob. Agents Chemother. pmid:25155606
Hunt Gerardo S et al. Comparison of Etest to broth microdilution method for testing Streptococcus pneumoniae susceptibility to levofloxacin and three macrolides. 1996 Antimicrob. Agents Chemother. pmid:8891154
Zheng S et al. Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects. 2014 Antimicrob. Agents Chemother. pmid:25155592
Engel JN Azithromycin-induced block of elementary body formation in Chlamydia trachomatis. 1992 Antimicrob. Agents Chemother. pmid:1280057
Saini H et al. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. 2017 Antimicrob. Agents Chemother. pmid:28031194
Starner TD et al. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms. 2008 Antimicrob. Agents Chemother. pmid:17954687
Brieland JK et al. Efficacy of SCH27899 in an animal model of Legionnaires' disease using immunocompromised A/J mice. 2000 Antimicrob. Agents Chemother. pmid:10770771
Turcinov D et al. Failure of azithromycin in treatment of Brill-Zinsser disease. 2000 Antimicrob. Agents Chemother. pmid:10817744
Luke DR et al. Safety, toleration, and pharmacokinetics of intravenous azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8913468
Tsitsika A et al. Single-oral-dose azithromycin prophylaxis against experimental streptococcal or staphylococcal aortic valve endocarditis. 2000 Antimicrob. Agents Chemother. pmid:10817749
Olsen KM et al. Intrapulmonary pharmacokinetics of azithromycin in healthy volunteers given five oral doses. 1996 Antimicrob. Agents Chemother. pmid:8913469
Kuo CC et al. In vitro activities of azithromycin, clarithromycin, and other antibiotics against Chlamydia pneumoniae. 1996 Antimicrob. Agents Chemother. pmid:8913488
Pacifico L et al. Comparative efficacy and safety of 3-day azithromycin and 10-day penicillin V treatment of group A beta-hemolytic streptococcal pharyngitis in children. 1996 Antimicrob. Agents Chemother. pmid:8849215
Mukherjee P et al. Emergence of high-level azithromycin resistance in Campylobacter jejuni isolates from pediatric diarrhea patients in Kolkata, India. 2014 Antimicrob. Agents Chemother. pmid:24777098
Achard A et al. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene. 2008 Antimicrob. Agents Chemother. pmid:18519724
Zasowski E et al. Relationship between time to clinical response and outcomes among Pneumonia Outcomes Research Team (PORT) risk class III and IV hospitalized patients with community-acquired pneumonia who received ceftriaxone and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752270
Rouse MS et al. Efficacy of azithromycin or clarithromycin for prophylaxis of viridans group streptococcus experimental endocarditis. 1997 Antimicrob. Agents Chemother. pmid:9257739
Wong MH et al. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752251
Jeong BH et al. Peak Plasma Concentration of Azithromycin and Treatment Responses in Mycobacterium avium Complex Lung Disease. 2016 Antimicrob. Agents Chemother. pmid:27480854
Marvig RL et al. Mutations in 23S rRNA confer resistance against azithromycin in Pseudomonas aeruginosa. 2012 Antimicrob. Agents Chemother. pmid:22644032
Tomazic J et al. Ex vivo effect of azithromycin in human leukocyte bactericidal functions. 1995 Antimicrob. Agents Chemother. pmid:7486947
Heifets L et al. Mycobacterium avium strains resistant to clarithromycin and azithromycin. 1993 Antimicrob. Agents Chemother. pmid:8031351
Wolinsky E Mycobacterium avium strains resistant to clarithromycin and azithromycin. 1994 Antimicrob. Agents Chemother. pmid:8031406
Allen GP and Harris KA Resistance Selection in Shigella flexneri by Azithromycin, Ceftriaxone, Ciprofloxacin, Levofloxacin, and Moxifloxacin. 2017 Antimicrob. Agents Chemother. pmid:28483960
Barry AL et al. In vitro activities of azithromycin (CP 62,993), clarithromycin (A-56268; TE-031), erythromycin, roxithromycin, and clindamycin. 1988 Antimicrob. Agents Chemother. pmid:2840016
Caronzolo D et al. Glucocorticoids increase in vitro and in vivo activities of antibiotics against Chlamydophila pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15561871
Carter G et al. A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. 2004 Antimicrob. Agents Chemother. pmid:15561879
Roord JJ et al. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. 1996 Antimicrob. Agents Chemother. pmid:9124837
Dreses-Werringloer U et al. Effects of azithromycin and rifampin on Chlamydia trachomatis infection in vitro. 2001 Antimicrob. Agents Chemother. pmid:11600348
Tateda K et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. 2001 Antimicrob. Agents Chemother. pmid:11353657
Gödeke J et al. Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa. 2013 Antimicrob. Agents Chemother. pmid:23318806
Könönen E et al. beta-lactamase production and antimicrobial susceptibility of oral heterogeneous Fusobacterium nucleatum populations in young children. 1999 Antimicrob. Agents Chemother. pmid:10223950
Nagaoka K et al. Macrolides inhibit Fusobacterium nucleatum-induced MUC5AC production in human airway epithelial cells. 2013 Antimicrob. Agents Chemother. pmid:23380724
Bergman KL et al. Antimicrobial activities and postantibiotic effects of clarithromycin, 14-hydroxy-clarithromycin, and azithromycin in epithelial cell lining fluid against clinical isolates of haemophilus influenzae and Streptococcus pneumoniae. 1999 Antimicrob. Agents Chemother. pmid:10223956
Akova M et al. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. 1999 Antimicrob. Agents Chemother. pmid:10223958