Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Airway Obstruction D000402 13 associated lipids
Stomach Ulcer D013276 75 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hearing Loss, Sensorineural D006319 8 associated lipids
Otitis Media D010033 12 associated lipids
Carcinoma, Basal Cell D002280 6 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Reed MD and Blumer JL Azithromycin: a critical review of the first azilide antibiotic and its role in pediatric practice. 1997 Pediatr. Infect. Dis. J. pmid:9384342
Obando Santaella I et al. [Cat scratch disease. Diagnostic and therapeutic considerations]. 1997 An. Esp. Pediatr. pmid:9382360
Dudle G et al. [Meningitis after acute Borrelia burgdorferi infection in HIV infection]. 1997 Dtsch. Med. Wochenschr. pmid:9378035
Tartaglione T Treatment of nontuberculous mycobacterial infections: role of clarithromycin and azithromycin. 1997 Jul-Aug Clin Ther pmid:9377608
Odenholt I et al. Studies of the killing kinetics of benzylpenicillin, cefuroxime, azithromycin, and sparfloxacin on bacteria in the postantibiotic phase. 1997 Antimicrob. Agents Chemother. pmid:9371360
Scaramuzza A et al. Case of the month: a girl with oedema and purpuric eruption. Diagnosis: acute haemorrhagic oedema of infancy. 1997 Eur. J. Pediatr. pmid:9365076
Lauvau DV and Verbist L An open, multicentre, comparative study of the efficacy and safety of azithromycin and co-amoxiclav in the treatment of upper and lower respiratory tract infections in children. The Paediatric Azithromycin Study Group. 1997 Sep-Oct J. Int. Med. Res. pmid:9364291
Cohn DL Prevention strategies for Mycobacterium avium-intracellulare complex (MAC) infection. A review of recent studies in patients with AIDS. 1997 Drugs pmid:9358195
Dautzenberg B Rationale for the prevention of disseminated Mycobacterium avium-intracellulare complex disease. 1997 Drugs pmid:9358194
Pendland SL et al. Comparison of charcoal- and starch-based media for testing susceptibilities of Legionella species to macrolides, azalides, and fluoroquinolones. 1997 J. Clin. Microbiol. pmid:9350781
Rajyaguru JM and Muszynski MJ Enhancement of Burkholderia cepacia antimicrobial susceptibility by cationic compounds. 1997 J. Antimicrob. Chemother. pmid:9338485
Vazifeh D et al. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin. 1997 Antimicrob. Agents Chemother. pmid:9333032
Buehring I et al. Chronic sinusitis refractory to standard management in patients with humoral immunodeficiencies. 1997 Clin. Exp. Immunol. pmid:9328124
Destache CJ et al. Microbiologic effect of bovine cerebrospinal fluid and azithromycin against Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. 1997 Sep-Oct Pharmacotherapy pmid:9324186
Stevens RC et al. Pharmacokinetics of azithromycin after single- and multiple-doses in children. 1997 Sep-Oct Pharmacotherapy pmid:9324176
Rodríguez-Bano J et al. [Penetration of azithromycin into human neutrophils: effect of hydrogen peroxide production]. 1997 Enferm. Infecc. Microbiol. Clin. pmid:9312278
Roblin PM et al. In vitro activity of trovafloxacin against Chlamydia pneumoniae. 1997 Antimicrob. Agents Chemother. pmid:9303410
Ednie LM et al. Comparative antianaerobic activities of the ketolides HMR 3647 (RU 66647) and HMR 3004 (RU 64004). 1997 Antimicrob. Agents Chemother. pmid:9303406
Jepras RI et al. Rapid assessment of antibiotic effects on Escherichia coli by bis-(1,3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. 1997 Antimicrob. Agents Chemother. pmid:9303401
Visalli MA et al. Susceptibility of penicillin-susceptible and -resistant pneumococci to dirithromycin compared with susceptibilities to erythromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin. 1997 Antimicrob. Agents Chemother. pmid:9303375