Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Airway Obstruction D000402 13 associated lipids
Stomach Ulcer D013276 75 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hearing Loss, Sensorineural D006319 8 associated lipids
Otitis Media D010033 12 associated lipids
Carcinoma, Basal Cell D002280 6 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Stomach Diseases D013272 7 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Lung Diseases D008171 37 associated lipids
Sarcoidosis D012507 13 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Colitis D003092 69 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Genital Diseases, Male D005832 3 associated lipids
Sexually Transmitted Diseases D012749 4 associated lipids
Fatty Liver D005234 48 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Abscess D000038 13 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Osteitis D010000 10 associated lipids
Dog Diseases D004283 5 associated lipids
Osteomyelitis D010019 10 associated lipids
Coronary Disease D003327 70 associated lipids
Pancreatitis D010195 10 associated lipids
Acne Vulgaris D000152 35 associated lipids
Skin Ulcer D012883 6 associated lipids
Eyelid Diseases D005141 4 associated lipids
Multiple Myeloma D009101 13 associated lipids
Pain, Postoperative D010149 13 associated lipids
Weight Gain D015430 101 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Abnormalities, Drug-Induced D000014 10 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Staphylococcal Infections D013203 15 associated lipids
Corneal Opacity D003318 3 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Eye Diseases D005128 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Sher AA et al. [Interactions in the system of copper ion-azalide (azithromycin)]. 1994 Sep-Oct Antibiot. Khimioter. pmid:7695446
Iur'ev SIu et al. [Azithromycin levels in the chorion tissue within the first three months of the pregnancy term]. 2004 Antibiot. Khimioter. pmid:15850052
Iakovlev SV and Ukhin SA [Azithromycin: general properties and regimen optimization based on pharmacokinetic and pharmacological parameters]. 2003 Antibiot. Khimioter. pmid:12803047
Sidorenko SV [Azithromycin--an antibiotic of the azalide group]. 1993 Antibiot. Khimioter. pmid:8060181
Lopatkin NA et al. [Use of azithromycin ("Sumamded") in the treatment of infectious-inflammatory diseases of the lower urinary tract and male genitalia]. 1993 Antibiot. Khimioter. pmid:8060189
Euba B et al. Relationship between azithromycin susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory infection. 2015 Antimicrob. Agents Chemother. pmid:25712355
Liu P et al. Comparative pharmacokinetics of azithromycin in serum and white blood cells of healthy subjects receiving a single-dose extended-release regimen versus a 3-day immediate-release regimen. 2007 Antimicrob. Agents Chemother. pmid:17060516
Soltow SM and Brenner GM Synergistic activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. 2007 Antimicrob. Agents Chemother. pmid:17060522
Beringer P et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. 2005 Antimicrob. Agents Chemother. pmid:16304166
Ulrich M et al. Moxifloxacin and azithromycin but not amoxicillin protect human respiratory epithelial cells against streptococcus pneumoniae in vitro when administered up to 6 hours after challenge. 2005 Antimicrob. Agents Chemother. pmid:16304181
Kohlhoff SA et al. In vitro activity of AZD0914, a novel DNA gyrase inhibitor, against Chlamydia trachomatis and Chlamydia pneumoniae. 2014 Antimicrob. Agents Chemother. pmid:25288086
Grinwis ME et al. Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients. 2010 Antimicrob. Agents Chemother. pmid:20404127
Bosnar M et al. Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. 2005 Antimicrob. Agents Chemother. pmid:15917536
Singh S et al. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. 2014 Antimicrob. Agents Chemother. pmid:24890593
Turcinov D et al. Failure of azithromycin in treatment of Brill-Zinsser disease. 2000 Antimicrob. Agents Chemother. pmid:10817744
Tsitsika A et al. Single-oral-dose azithromycin prophylaxis against experimental streptococcal or staphylococcal aortic valve endocarditis. 2000 Antimicrob. Agents Chemother. pmid:10817749
Bin XX et al. Effect of azithromycin plus rifampin versus amoxicillin alone on eradication and inflammation in the chronic course of Chlamydia pneumoniae pneumonitis in mice. 2000 Antimicrob. Agents Chemother. pmid:10817751
Johnson MM et al. Effect of carbon dioxide on testing of susceptibilities of respiratory tract pathogens to macrolide and azalide antimicrobial agents. 1999 Antimicrob. Agents Chemother. pmid:10428903
Kuo CC et al. In vitro activities of azithromycin, clarithromycin, and other antibiotics against Chlamydia pneumoniae. 1996 Antimicrob. Agents Chemother. pmid:8913488
Credito KL et al. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology. 1999 Antimicrob. Agents Chemother. pmid:10428930
Pacifico L et al. Comparative efficacy and safety of 3-day azithromycin and 10-day penicillin V treatment of group A beta-hemolytic streptococcal pharyngitis in children. 1996 Antimicrob. Agents Chemother. pmid:8849215
Unemo M et al. First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? 2014 Antimicrob. Agents Chemother. pmid:24189248
Li H et al. Meta-analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. 2014 Antimicrob. Agents Chemother. pmid:24189261
Navarro G et al. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. 2014 Antimicrob. Agents Chemother. pmid:24295976
Blais J et al. Inhibition of Toxoplasma gondii protein synthesis by azithromycin. 1993 Antimicrob. Agents Chemother. pmid:8215287
Dever LL et al. Comparative in vitro activities of clarithromycin, azithromycin, and erythromycin against Borrelia burgdorferi. 1993 Antimicrob. Agents Chemother. pmid:8215288
Edelstein PH and Edelstein MA In vitro activity of azithromycin against clinical isolates of Legionella species. 1991 Antimicrob. Agents Chemother. pmid:1849708
Kosowska K et al. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae. 2004 Antimicrob. Agents Chemother. pmid:15504829
Berry V et al. Bacteriological efficacies of three macrolides compared with those of amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae. 1998 Antimicrob. Agents Chemother. pmid:9835514
Biedenbach DJ et al. Determination of CEM-101 activity tested against clinical isolates of Neisseria meningitidis from a worldwide collection. 2010 Antimicrob. Agents Chemother. pmid:20625152
Piesman J et al. Efficacy of an experimental azithromycin cream for prophylaxis of tick-transmitted lyme disease spirochete infection in a murine model. 2014 Antimicrob. Agents Chemother. pmid:24165183
Chisholm SA et al. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. 2010 Antimicrob. Agents Chemother. pmid:20585125
Deshpande D et al. Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease. 2016 Antimicrob. Agents Chemother. pmid:26810646
Azoulay-Dupuis E et al. Prophylactic and therapeutic activities of azithromycin in a mouse model of pneumococcal pneumonia. 1991 Antimicrob. Agents Chemother. pmid:1656849
Chinh NT et al. A randomized controlled comparison of azithromycin and ofloxacin for treatment of multidrug-resistant or nalidixic acid-resistant enteric fever. 2000 Antimicrob. Agents Chemother. pmid:10858343
Amacher DE et al. Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450. 1991 Antimicrob. Agents Chemother. pmid:1656856
Fass RJ Erythromycin, clarithromycin, and azithromycin: use of frequency distribution curves, scattergrams, and regression analyses to compare in vitro activities and describe cross-resistance. 1993 Antimicrob. Agents Chemother. pmid:8257127
Gunell M et al. In vitro activity of azithromycin against nontyphoidal Salmonella enterica. 2010 Antimicrob. Agents Chemother. pmid:20498312
Pfefferkorn ER and Borotz SE Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. 1994 Antimicrob. Agents Chemother. pmid:8141576
Pene Dumitrescu T et al. Development of a population pharmacokinetic model to describe azithromycin whole-blood and plasma concentrations over time in healthy subjects. 2013 Antimicrob. Agents Chemother. pmid:23629714
Gelber RH et al. Activities of various macrolide antibiotics against Mycobacterium leprae infection in mice. 1991 Antimicrob. Agents Chemother. pmid:1648889
Caronzolo D et al. Glucocorticoids increase in vitro and in vivo activities of antibiotics against Chlamydophila pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15561871
Carter G et al. A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. 2004 Antimicrob. Agents Chemother. pmid:15561879
Sjölund Karlsson M et al. Outbreak of infections caused by Shigella sonnei with reduced susceptibility to azithromycin in the United States. 2013 Antimicrob. Agents Chemother. pmid:23274665
Dreses-Werringloer U et al. Effects of azithromycin and rifampin on Chlamydia trachomatis infection in vitro. 2001 Antimicrob. Agents Chemother. pmid:11600348
Tateda K et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. 2001 Antimicrob. Agents Chemother. pmid:11353657
Donati M et al. In vitro activities of several antimicrobial agents against recently isolated and genotyped Chlamydia trachomatis urogenital serovars D through K. 2010 Antimicrob. Agents Chemother. pmid:20855744
Bergman KL et al. Antimicrobial activities and postantibiotic effects of clarithromycin, 14-hydroxy-clarithromycin, and azithromycin in epithelial cell lining fluid against clinical isolates of haemophilus influenzae and Streptococcus pneumoniae. 1999 Antimicrob. Agents Chemother. pmid:10223956
Akova M et al. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. 1999 Antimicrob. Agents Chemother. pmid:10223958
Patel KB et al. Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891147