Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Actinomycetales Infections D000193 4 associated lipids
Legionnaires' Disease D007877 4 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Sexually Transmitted Diseases D012749 4 associated lipids
Chancroid D002602 4 associated lipids
Tick Infestations D013984 4 associated lipids
Lymphogranuloma Venereum D008219 4 associated lipids
Cat-Scratch Disease D002372 4 associated lipids
Respiratory Tract Infections D012141 4 associated lipids
Retinitis D012173 4 associated lipids
Elephantiasis, Filarial D004605 4 associated lipids
Agammaglobulinemia D000361 4 associated lipids
Common Variable Immunodeficiency D017074 4 associated lipids
Otitis Media, Suppurative D010035 4 associated lipids
Psittacosis D009956 4 associated lipids
Yaws D015001 4 associated lipids
Lymphangitis D008205 4 associated lipids
Conjunctivitis, Inclusion D003235 4 associated lipids
Purpura, Thrombocytopenic, Idiopathic D016553 4 associated lipids
Syphilis, Latent D013592 4 associated lipids
Fetal Membranes, Premature Rupture D005322 4 associated lipids
Acinetobacter Infections D000151 4 associated lipids
Mycobacterium avium-intracellulare Infection D015270 4 associated lipids
Desulfovibrionaceae Infections D045824 5 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Sexually Transmitted Diseases, Bacterial D015231 5 associated lipids
Dog Diseases D004283 5 associated lipids
Aortic Aneurysm, Abdominal D017544 5 associated lipids
Ureaplasma Infections D016869 5 associated lipids
Parasitemia D018512 5 associated lipids
Erythema Nodosum D004893 5 associated lipids
Boutonneuse Fever D001907 5 associated lipids
Lyme Disease D008193 5 associated lipids
Prostatitis D011472 5 associated lipids
Skin Diseases, Vesiculobullous D012872 5 associated lipids
Splenic Diseases D013158 5 associated lipids
Rickettsia Infections D012282 5 associated lipids
Syphilis D013587 6 associated lipids
Dysentery, Bacillary D004405 6 associated lipids
Carcinoma, Basal Cell D002280 6 associated lipids
Whooping Cough D014917 6 associated lipids
Periapical Periodontitis D010485 6 associated lipids
Leishmaniasis, Cutaneous D016773 6 associated lipids
Protozoan Infections D011528 6 associated lipids
Pneumonia, Mycoplasma D011019 6 associated lipids
Bronchiolitis D001988 6 associated lipids
Skin Ulcer D012883 6 associated lipids
Mycoplasmatales Infections D009180 6 associated lipids
Chlamydia Infections D002690 7 associated lipids
Pelvic Pain D017699 7 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Arrieta A et al. High-dose azithromycin versus high-dose amoxicillin-clavulanate for treatment of children with recurrent or persistent acute otitis media. 2003 Antimicrob. Agents Chemother. pmid:14506028
Lu Y et al. Antibiotics Promote Escherichia coli-Pseudomonas aeruginosa Conjugation through Inhibiting Quorum Sensing. 2017 Antimicrob. Agents Chemother. pmid:28993333
Nilius AM et al. Comparative in vitro activity of ABT-773, a novel antibacterial ketolide. 2001 Antimicrob. Agents Chemother. pmid:11408246
Parry CM et al. Randomized controlled comparison of ofloxacin, azithromycin, and an ofloxacin-azithromycin combination for treatment of multidrug-resistant and nalidixic acid-resistant typhoid fever. 2007 Antimicrob. Agents Chemother. pmid:17145784
Matlow A et al. Susceptibilities of neonatal respiratory isolates of Ureaplasma urealyticum to antimicrobial agents. 1998 Antimicrob. Agents Chemother. pmid:9593171
Maves RC et al. Antimicrobial susceptibility of Brucella melitensis isolates in Peru. 2011 Antimicrob. Agents Chemother. pmid:21199926
Ishida K et al. In vitro and in vivo activities of macrolides against Mycoplasma pneumoniae. 1994 Antimicrob. Agents Chemother. pmid:8031048
Hauser C et al. In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. 2015 Antimicrob. Agents Chemother. pmid:25547354
Salman S et al. Pharmacokinetic properties of azithromycin in pregnancy. 2010 Antimicrob. Agents Chemother. pmid:19858250
Koeva M et al. An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. 2017 Antimicrob. Agents Chemother. pmid:28923873
Dubois J et al. In vitro and intracellular activities of peptide deformylase inhibitor GSK1322322 against Legionella pneumophila isolates. 2015 Antimicrob. Agents Chemother. pmid:25348534
Maezono H et al. Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. 2011 Antimicrob. Agents Chemother. pmid:21911560
Yamada K et al. Azithromycin attenuates lung inflammation in a mouse model of ventilator-associated pneumonia by multidrug-resistant Acinetobacter baumannii. 2013 Antimicrob. Agents Chemother. pmid:23733468
Jacobs MR et al. Study design questions in treatment of children with acute otitis media. 2004 Antimicrob. Agents Chemother. pmid:15241848
Blandizzi C et al. Distribution of azithromycin in plasma and tonsil tissue after repeated oral administration of 10 or 20 milligrams per kilogram in pediatric patients. 2002 Antimicrob. Agents Chemother. pmid:11959610
Moon JE et al. Efficacy of macrolides and telithromycin against leptospirosis in a hamster model. 2006 Antimicrob. Agents Chemother. pmid:16723556
Steele-Moore L et al. In vitro activities of clarithromycin and azithromycin against clinical isolates of Mycobacterium avium-M. intracellulare. 1999 Antimicrob. Agents Chemother. pmid:10383373
Bogdanovich T et al. Activities of ceftobiprole, a novel broad-spectrum cephalosporin, against Haemophilus influenzae and Moraxella catarrhalis. 2006 Antimicrob. Agents Chemother. pmid:16723565
Kosowska-Shick K et al. Antipneumococcal activity of DW-224a, a new quinolone, compared to those of eight other agents. 2006 Antimicrob. Agents Chemother. pmid:16723567
Carannante A et al. Changing antimicrobial resistance profiles among Neisseria gonorrhoeae isolates in Italy, 2003 to 2012. 2014 Antimicrob. Agents Chemother. pmid:25070110
Zhang Y et al. Novel Detection Strategy To Rapidly Evaluate the Efficacy of Antichlamydial Agents. 2017 Antimicrob. Agents Chemother. pmid:27855081
Waites KB et al. In Vitro Activities of Lefamulin and Other Antimicrobial Agents against Macrolide-Susceptible and Macrolide-Resistant Mycoplasma pneumoniae from the United States, Europe, and China. 2017 Antimicrob. Agents Chemother. pmid:27855075
Shimuta K et al. Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. 2013 Antimicrob. Agents Chemother. pmid:23939890
D'Ignazio J et al. Novel, single-dose microsphere formulation of azithromycin versus 7-day levofloxacin therapy for treatment of mild to moderate community-acquired Pneumonia in adults. 2005 Antimicrob. Agents Chemother. pmid:16189077
Jensen JS et al. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against macrolide-resistant and -susceptible Mycoplasma genitalium strains. 2014 Antimicrob. Agents Chemother. pmid:24637681
Bielaszewska M et al. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. 2012 Antimicrob. Agents Chemother. pmid:22391549
Nagai K et al. Activities of a new fluoroketolide, HMR 3787, and its (des)-fluor derivative RU 64399 compared to those of telithromycin, erythromycin A, azithromycin, clarithromycin, and clindamycin against macrolide-susceptible or -resistant Streptococcus pneumoniae and S. pyogenes. 2001 Antimicrob. Agents Chemother. pmid:11600391
Klemens SP and Cynamon MH Intermittent azithromycin for treatment of Mycobacterium avium infection in beige mice. 1994 Antimicrob. Agents Chemother. pmid:7986001
Andersen SL et al. Efficacy of azithromycin as a causal prophylactic agent against murine malaria. 1994 Antimicrob. Agents Chemother. pmid:7986022
Beale AS and Upshon PA Characteristics of murine model of genital infection with Chlamydia trachomatis and effects of therapy with tetracyclines, amoxicillin-clavulanic acid, or azithromycin. 1994 Antimicrob. Agents Chemother. pmid:7811001
Pruul H and McDonald PJ Potentiation of antibacterial activity of azithromycin and other macrolides by normal human serum. 1992 Antimicrob. Agents Chemother. pmid:1317141
Mandell GL and Coleman EJ Activities of antimicrobial agents against intracellular pneumococci. 2000 Antimicrob. Agents Chemother. pmid:10952618
Brown BA et al. Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. 1992 Antimicrob. Agents Chemother. pmid:1317144
Welsh LE et al. In vitro evaluation of activities of azithromycin, erythromycin, and tetracycline against Chlamydia trachomatis and Chlamydia pneumoniae. 1992 Antimicrob. Agents Chemother. pmid:1318677
Caronzolo D et al. Effect of PEX, a noncatalytic metalloproteinase fragment with integrin-binding activity, on experimental Chlamydophila pneumoniae infection. 2006 Antimicrob. Agents Chemother. pmid:17005805
Mizukane R et al. Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. 1994 Antimicrob. Agents Chemother. pmid:8203850
Goldstein EJ et al. Comparative in vitro activities of azithromycin, Bay y 3118, levofloxacin, sparfloxacin, and 11 other oral antimicrobial agents against 194 aerobic and anaerobic bite wound isolates. 1995 Antimicrob. Agents Chemother. pmid:7625795
Su XH et al. Multidrug-Resistant Neisseria gonorrhoeae Isolates from Nanjing, China, Are Sensitive to Killing by a Novel DNA Gyrase Inhibitor, ETX0914 (AZD0914). 2015 Antimicrob. Agents Chemother. pmid:26482313
Rakita RM et al. Intracellular activity of azithromycin against bacterial enteric pathogens. 1994 Antimicrob. Agents Chemother. pmid:7810998
Meyer AP et al. Uptake of azithromycin by human monocytes and enhanced intracellular antibacterial activity against Staphylococcus aureus. 1993 Antimicrob. Agents Chemother. pmid:8285612
Imamura Y et al. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. 2005 Antimicrob. Agents Chemother. pmid:15793115
Shima K et al. Impact of a low-oxygen environment on the efficacy of antimicrobials against intracellular Chlamydia trachomatis. 2011 Antimicrob. Agents Chemother. pmid:21321137
Chinh NT et al. Pharmacokinetics and ex vivo antimalarial activity of artesunate-azithromycin in healthy volunteers. 2011 Antimicrob. Agents Chemother. pmid:21730120
Wind CM et al. A Case-Control Study of Molecular Epidemiology in Relation to Azithromycin Resistance in Neisseria gonorrhoeae Isolates Collected in Amsterdam, the Netherlands, between 2008 and 2015. 2017 Antimicrob. Agents Chemother. pmid:28373191
Karlowsky JA et al. Susceptibilities to levofloxacin in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis clinical isolates from children: results from 2000-2001 and 2001-2002 TRUST studies in the United States. 2003 Antimicrob. Agents Chemother. pmid:12760850
Yamaguchi H et al. Chlamydia pneumoniae resists antibiotics in lymphocytes. 2003 Antimicrob. Agents Chemother. pmid:12760877
Kutlin A et al. Effect of prolonged treatment with azithromycin, clarithromycin, or levofloxacin on Chlamydia pneumoniae in a continuous-infection Model. 2002 Antimicrob. Agents Chemother. pmid:11796350
Jacks SS et al. In vitro susceptibilities of Rhodococcus equi and other common equine pathogens to azithromycin, clarithromycin, and 20 other antimicrobials. 2003 Antimicrob. Agents Chemother. pmid:12709351
Matzneller P et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. 2013 Antimicrob. Agents Chemother. pmid:23357769
Patel KB et al. Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891147