Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Syphilis D013587 6 associated lipids
Hearing Disorders D006311 10 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Infant, Newborn, Diseases D007232 9 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Uterine Cervicitis D002575 3 associated lipids
Neutropenia D009503 15 associated lipids
Lung Diseases, Obstructive D008173 10 associated lipids
Urticaria D014581 13 associated lipids
Escherichia coli Infections D004927 17 associated lipids
Respiratory Tract Infections D012141 4 associated lipids
Agammaglobulinemia D000361 4 associated lipids
Corneal Edema D015715 3 associated lipids
Tuberculosis, Pulmonary D014397 18 associated lipids
HIV Seropositivity D006679 15 associated lipids
Endophthalmitis D009877 12 associated lipids
Enteritis D004751 8 associated lipids
Leprosy D007918 8 associated lipids
Periapical Periodontitis D010485 6 associated lipids
Bronchial Hyperreactivity D016535 15 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Sidhu H et al. Risk assessment of biosolids-borne ciprofloxacin and azithromycin. 2019 Sci. Total Environ. pmid:30463165
Sidhu H et al. Plant toxicity and accumulation of biosolids-borne ciprofloxacin and azithromycin. 2019 Sci. Total Environ. pmid:30340267
Sidhu H et al. Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils. 2019 Sci. Total Environ. pmid:30196217
Sidhu H et al. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses. 2019 Sci. Total Environ. pmid:30195128
Abdulai AA et al. Community-based mass treatment with azithromycin for the elimination of yaws in Ghana-Results of a pilot study. 2018 PLoS Negl Trop Dis pmid:29566044
Azmanis P et al. First detection of Cryptosporidium parvum in falcons (Falconiformes): Diagnosis, molecular sequencing, therapeutic trial and epidemiological assessment of a possible emerging disease in captive falcons. 2018 Vet. Parasitol. pmid:29559142
Luo H et al. Clinical characteristics from co-infection with avian influenza A H7N9 and Mycoplasma pneumoniae: a case report. 2018 J Med Case Rep pmid:29540219
Kawamura K et al. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. 2018 Int. J. Antimicrob. Agents pmid:29501821
Chatterjee S and Agrawal D Azithromycin in the Management of Pythium insidiosum Keratitis. 2018 Cornea pmid:29095755
Thakur SD et al. High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003-15): time to consider point-of-care or molecular testing for precision treatment? 2018 J. Antimicrob. Chemother. pmid:29029217
Kelly C et al. Macrolide antibiotics for bronchiectasis. 2018 Cochrane Database Syst Rev pmid:29543980
Keenan JD et al. Azithromycin to Reduce Childhood Mortality in Sub-Saharan Africa. 2018 N. Engl. J. Med. pmid:29694816
Marks M et al. Comparative efficacy of low-dose versus standard-dose azithromycin for patients with yaws: a randomised non-inferiority trial in Ghana and Papua New Guinea. 2018 Lancet Glob Health pmid:29456191
Sardana K et al. An observational study of the efficacy of azithromycin in erythema annulare centrifugum. 2018 Clin. Exp. Dermatol. pmid:29297941
Kamio K and Azuma A Diffuse panbronchiolitis: A fine road from the discovery of a disease to the establishment of treatment. 2018 Respir Investig pmid:30049592
Tada H et al. The effects of Lactobacillus reuteri probiotics combined with azithromycin on peri-implantitis: A randomized placebo-controlled study. 2018 J Prosthodont Res pmid:28756115
Fleming-Dutra KE et al. Variations in Antibiotic and Azithromycin Prescribing for Children by Geography and Specialty-United States, 2013. 2018 Pediatr. Infect. Dis. J. pmid:28746259
Grewal TK et al. Therapeutic implications of nano-encapsulated rifabutin, azithromycin & ethambutol against experimental infection in mice. 2018 Indian J. Med. Res. pmid:30168492
Montazeri M et al. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. 2018 Parasitol. Res. pmid:30088074
Tilahun Z and Fenta TG Coverage of azithromycin mass treatment for trachoma elimination in Northwestern Ethiopia: a community based cross-sectional study. 2018 BMC Ophthalmol pmid:30081851