Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Pain, Postoperative D010149 13 associated lipids
Weight Gain D015430 101 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Abnormalities, Drug-Induced D000014 10 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Staphylococcal Infections D013203 15 associated lipids
Corneal Opacity D003318 3 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Eye Diseases D005128 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Saint-Criq V et al. Restoration of chloride efflux by azithromycin in airway epithelial cells of cystic fibrosis patients. 2011 Antimicrob. Agents Chemother. pmid:21220528
Euba B et al. Relationship between azithromycin susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory infection. 2015 Antimicrob. Agents Chemother. pmid:25712355
Sato T et al. In vitro intracellular activity and in vivo efficacy of modithromycin, a novel bicyclolide, against Legionella pneumophila. 2011 Antimicrob. Agents Chemother. pmid:21220530
Shigemura K et al. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo, Japan. 2015 Antimicrob. Agents Chemother. pmid:25712352
Waag DM Efficacy of postexposure therapy against glanders in mice. 2015 Antimicrob. Agents Chemother. pmid:25645854
Peric M et al. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. 2003 Antimicrob. Agents Chemother. pmid:12604536
Seral C et al. Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. 2003 Antimicrob. Agents Chemother. pmid:12604540
Imamura Y et al. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells. 2004 Antimicrob. Agents Chemother. pmid:15328111
Roblin PM et al. In vitro activities of rifamycin derivatives ABI-1648 (Rifalazil, KRM-1648), ABI-1657, and ABI-1131 against Chlamydia trachomatis and recent clinical isolates of Chlamydia pneumoniae. 2003 Antimicrob. Agents Chemother. pmid:12604555
Liu P et al. Comparative pharmacokinetics of azithromycin in serum and white blood cells of healthy subjects receiving a single-dose extended-release regimen versus a 3-day immediate-release regimen. 2007 Antimicrob. Agents Chemother. pmid:17060516
Rodvold KA et al. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. 1997 Antimicrob. Agents Chemother. pmid:9174209
Soltow SM and Brenner GM Synergistic activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. 2007 Antimicrob. Agents Chemother. pmid:17060522
Solomon AW et al. Impact of mass distribution of azithromycin on the antibiotic susceptibilities of ocular Chlamydia trachomatis. 2005 Antimicrob. Agents Chemother. pmid:16251338
Kirkcaldy RD et al. Analysis of Neisseria gonorrhoeae azithromycin susceptibility in the United States by the Gonococcal Isolate Surveillance Project, 2005 to 2013. 2015 Antimicrob. Agents Chemother. pmid:25451056
Nahata MC et al. Pharmacokinetics of azithromycin in pediatric patients after oral administration of multiple doses of suspension. 1993 Antimicrob. Agents Chemother. pmid:8383944
Vaara M Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria. 1993 Antimicrob. Agents Chemother. pmid:8383945
Batt SL et al. Impact of azithromycin administration for trachoma control on the carriage of antibiotic-resistant Streptococcus pneumoniae. 2003 Antimicrob. Agents Chemother. pmid:12936971
Brown ST et al. Azithromycin, rifabutin, and rifapentine for treatment and prophylaxis of Mycobacterium avium complex in rats treated with cyclosporine. 1993 Antimicrob. Agents Chemother. pmid:8384809
Henry DC et al. Randomized double-blind study comparing 3- and 6-day regimens of azithromycin with a 10-day amoxicillin-clavulanate regimen for treatment of acute bacterial sinusitis. 2003 Antimicrob. Agents Chemother. pmid:12936972
Goldman RC et al. Role of protonated and neutral forms of macrolides in binding to ribosomes from gram-positive and gram-negative bacteria. 1990 Antimicrob. Agents Chemother. pmid:2159256
Ohrt C et al. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. 2002 Antimicrob. Agents Chemother. pmid:12121927
Gladue RP and Snider ME Intracellular accumulation of azithromycin by cultured human fibroblasts. 1990 Antimicrob. Agents Chemother. pmid:2168141
Riska PF et al. Genetic and culture-based approaches for detecting macrolide resistance in Chlamydia pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15328134
Goldstein EJ et al. Activities of telithromycin (HMR 3647, RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and other antimicrobial agents against unusual anaerobes. 1999 Antimicrob. Agents Chemother. pmid:10543769
Watt G et al. Azithromycin activities against Orientia tsutsugamushi strains isolated in cases of scrub typhus in Northern Thailand. 1999 Antimicrob. Agents Chemother. pmid:10543774
Kutlin A et al. In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model. 1999 Antimicrob. Agents Chemother. pmid:10471577
Kohlhoff SA et al. In vitro activity of AZD0914, a novel DNA gyrase inhibitor, against Chlamydia trachomatis and Chlamydia pneumoniae. 2014 Antimicrob. Agents Chemother. pmid:25288086
Bui KQ et al. Mononuclear and polymorphonuclear leukocyte dispositions of clarithromycin and azithromycin in AIDS patients requiring Mycobacterium avium complex prophylaxis. 1999 Antimicrob. Agents Chemother. pmid:10471584
Grinwis ME et al. Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients. 2010 Antimicrob. Agents Chemother. pmid:20404127
Sugie M et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. 2004 Antimicrob. Agents Chemother. pmid:14982769
Loreto ES et al. New insights into the in vitro susceptibility of Pythium insidiosum. 2014 Antimicrob. Agents Chemother. pmid:25223997
Schmalstieg AM et al. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. 2012 Antimicrob. Agents Chemother. pmid:22751536
den Hollander JG et al. Comparison of pharmacodynamics of azithromycin and erythromycin in vitro and in vivo. 1998 Antimicrob. Agents Chemother. pmid:9527789
Bulman ZP et al. Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin. 2017 Antimicrob. Agents Chemother. pmid:28096154
Pandori MW et al. Detection of azithromycin resistance in Treponema pallidum by real-time PCR. 2007 Antimicrob. Agents Chemother. pmid:17620374
Hoffmann N et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. 2007 Antimicrob. Agents Chemother. pmid:17620382
Capobianco JO and Goldman RC Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H). 1990 Antimicrob. Agents Chemother. pmid:2178338
Hoberman A and Paradise JL Study design questions in treatment of children with acute otitis media. 2004 Antimicrob. Agents Chemother. pmid:15215151
Gorby GL and McGee ZA Antimicrobial interference with bacterial mechanisms of pathogenicity: effect of sub-MIC azithromycin on gonococcal piliation and attachment to human epithelial cells. 1990 Antimicrob. Agents Chemother. pmid:1982402
Bonnet M and Van der Auwera P Preincubation of Haemophilus influenzae with subinhibitory concentrations of macrolides: influence on human neutrophil chemiluminescence. 1993 Antimicrob. Agents Chemother. pmid:8390808
Gordillo ME et al. In vitro activity of azithromycin against bacterial enteric pathogens. 1993 Antimicrob. Agents Chemother. pmid:8390813
Singh S et al. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. 2014 Antimicrob. Agents Chemother. pmid:24890593
Johnson MM et al. Effect of carbon dioxide on testing of susceptibilities of respiratory tract pathogens to macrolide and azalide antimicrobial agents. 1999 Antimicrob. Agents Chemother. pmid:10428903
Geisler WM et al. Randomized, double-blind, multicenter safety and efficacy study of rifalazil compared with azithromycin for treatment of uncomplicated genital Chlamydia trachomatis infection in women. 2014 Antimicrob. Agents Chemother. pmid:24798277
Kobuchi S et al. Transport of Azithromycin into Extravascular Space in Rats. 2016 Antimicrob. Agents Chemother. pmid:27600045
Goldman RC and Capobianco JO Role of an energy-dependent efflux pump in plasmid pNE24-mediated resistance to 14- and 15-membered macrolides in Staphylococcus epidermidis. 1990 Antimicrob. Agents Chemother. pmid:1963291
Hoppe JE and Bryskier A In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampin and rifapentine). 1998 Antimicrob. Agents Chemother. pmid:9559823
Li H et al. Meta-analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. 2014 Antimicrob. Agents Chemother. pmid:24189261
Navarro G et al. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. 2014 Antimicrob. Agents Chemother. pmid:24295976
Binet R et al. Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. 2010 Antimicrob. Agents Chemother. pmid:20065052
Mallegol J et al. Antimicrobial activity of solithromycin against clinical isolates of Legionella pneumophila serogroup 1. 2014 Antimicrob. Agents Chemother. pmid:24277019
Blais J et al. Inhibition of Toxoplasma gondii protein synthesis by azithromycin. 1993 Antimicrob. Agents Chemother. pmid:8215287
Bermudez LE et al. Activity of moxifloxacin by itself and in combination with ethambutol, rifabutin, and azithromycin in vitro and in vivo against Mycobacterium avium. 2001 Antimicrob. Agents Chemother. pmid:11120969
Dever LL et al. Comparative in vitro activities of clarithromycin, azithromycin, and erythromycin against Borrelia burgdorferi. 1993 Antimicrob. Agents Chemother. pmid:8215288
Edelstein PH and Edelstein MA In vitro activity of azithromycin against clinical isolates of Legionella species. 1991 Antimicrob. Agents Chemother. pmid:1849708
Ohara T et al. Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. 2002 Antimicrob. Agents Chemother. pmid:12384353
Fuentes F et al. Postanitbiotic and sub-MIC effects of azithromycin and isepamicin against Staphylococcus aureus and Escherichia coli. 1998 Antimicrob. Agents Chemother. pmid:9527796
Kashuba AD and Amsden GW Bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. 1998 Antimicrob. Agents Chemother. pmid:9527816
Itaqui SR et al. In Vitro Synergism between Azithromycin or Terbinafine and Topical Antimicrobial Agents against Pythium insidiosum. 2016 Antimicrob. Agents Chemother. pmid:27216049
Matic V et al. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin. 2004 Antimicrob. Agents Chemother. pmid:15504828
Kosowska K et al. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae. 2004 Antimicrob. Agents Chemother. pmid:15504829
Berry V et al. Bacteriological efficacies of three macrolides compared with those of amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae. 1998 Antimicrob. Agents Chemother. pmid:9835514
Biedenbach DJ et al. Determination of CEM-101 activity tested against clinical isolates of Neisseria meningitidis from a worldwide collection. 2010 Antimicrob. Agents Chemother. pmid:20625152
Piesman J et al. Efficacy of an experimental azithromycin cream for prophylaxis of tick-transmitted lyme disease spirochete infection in a murine model. 2014 Antimicrob. Agents Chemother. pmid:24165183
Nahata MC et al. Pharmacokinetics of azithromycin in pediatric patients with acute otitis media. 1995 Antimicrob. Agents Chemother. pmid:7486938
Chisholm SA et al. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. 2010 Antimicrob. Agents Chemother. pmid:20585125
Tomazic J et al. Ex vivo effect of azithromycin in human leukocyte bactericidal functions. 1995 Antimicrob. Agents Chemother. pmid:7486947
Ouyang-Latimer J et al. In vitro antimicrobial susceptibility of bacterial enteropathogens isolated from international travelers to Mexico, Guatemala, and India from 2006 to 2008. 2011 Antimicrob. Agents Chemother. pmid:21115800
Fischer JH et al. Influence of body weight, ethnicity, oral contraceptives, and pregnancy on the pharmacokinetics of azithromycin in women of childbearing age. 2012 Antimicrob. Agents Chemother. pmid:22106226
Deshpande D et al. Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease. 2016 Antimicrob. Agents Chemother. pmid:26810646
Heifets L et al. Mycobacterium avium strains resistant to clarithromycin and azithromycin. 1993 Antimicrob. Agents Chemother. pmid:8031351
Vazifeh D et al. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin. 1997 Antimicrob. Agents Chemother. pmid:9333032
Wolinsky E Mycobacterium avium strains resistant to clarithromycin and azithromycin. 1994 Antimicrob. Agents Chemother. pmid:8031406
Taylor WR et al. Tolerability of azithromycin as malaria prophylaxis in adults in northeast papua, indonesia. 2003 Antimicrob. Agents Chemother. pmid:12821468
Nakajima T et al. Microbiological and Clinical Effects of Sitafloxacin and Azithromycin in Periodontitis Patients Receiving Supportive Periodontal Therapy. 2016 Antimicrob. Agents Chemother. pmid:26729495
Azoulay-Dupuis E et al. Prophylactic and therapeutic activities of azithromycin in a mouse model of pneumococcal pneumonia. 1991 Antimicrob. Agents Chemother. pmid:1656849
Ravdin JI and Skilogiannis J In vitro susceptibilities of Entamoeba histolytica to azithromycin, CP-63,956, erythromycin, and metronidazole. 1989 Antimicrob. Agents Chemother. pmid:2548442
Kawai Y et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. 2013 Antimicrob. Agents Chemother. pmid:23459497
Ressner RA et al. Antimicrobial susceptibilities of geographically diverse clinical human isolates of Leptospira. 2008 Antimicrob. Agents Chemother. pmid:18411316
Gunell M et al. In vitro activity of azithromycin against nontyphoidal Salmonella enterica. 2010 Antimicrob. Agents Chemother. pmid:20498312
Carvalho-Assef AP et al. Detection of NDM-1-, CTX-M-15-, and qnrB4-producing Enterobacter hormaechei isolates in Brazil. 2014 Antimicrob. Agents Chemother. pmid:24449772
Bermudez LE et al. Emergence of Mycobacterium avium populations resistant to macrolides during experimental chemotherapy. 1998 Antimicrob. Agents Chemother. pmid:9449283
Roblin PM and Hammerschlag MR Microbiologic efficacy of azithromycin and susceptibilities to azithromycin of isolates of Chlamydia pneumoniae from adults and children with community-acquired pneumonia. 1998 Antimicrob. Agents Chemother. pmid:9449287
Goldstein EJ et al. Activities of HMR 3004 (RU 64004) and HMR 3647 (RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and eight other antimicrobial agents against unusual aerobic and anaerobic human and animal bite pathogens isolated from skin and soft tissue infections in humans. 1998 Antimicrob. Agents Chemother. pmid:9593139
Spangler SK et al. Postantibiotic effect and postantibiotic sub-MIC effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. 1998 Antimicrob. Agents Chemother. pmid:9593160
Pankuch GA et al. In vitro selection of resistance to four beta-lactams and azithromycin in Streptococcus pneumoniae. 1998 Antimicrob. Agents Chemother. pmid:9797225
Pene Dumitrescu T et al. Development of a population pharmacokinetic model to describe azithromycin whole-blood and plasma concentrations over time in healthy subjects. 2013 Antimicrob. Agents Chemother. pmid:23629714
Roblin PM and Hammerschlag MR In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae. 1998 Antimicrob. Agents Chemother. pmid:9624507
Amsden GW et al. Pharmacokinetics in serum and leukocyte exposures of oral azithromycin, 1,500 milligrams, given over a 3- or 5-day period in healthy subjects. 1999 Antimicrob. Agents Chemother. pmid:9869584
Gelber RH et al. Activities of various macrolide antibiotics against Mycobacterium leprae infection in mice. 1991 Antimicrob. Agents Chemother. pmid:1648889
Woosley LN et al. CEM-101 activity against Gram-positive organisms. 2010 Antimicrob. Agents Chemother. pmid:20176910
Pérez-Martínez I and Haas D Azithromycin inhibits expression of the GacA-dependent small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. 2011 Antimicrob. Agents Chemother. pmid:21537014
Goswick SM and Brenner GM Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. 2003 Antimicrob. Agents Chemother. pmid:12543653
Hoffman HL et al. Influence of macrolide susceptibility on efficacies of clarithromycin and azithromycin against Streptococcus pneumoniae in a murine lung infection model. 2003 Antimicrob. Agents Chemother. pmid:12543686
Hafner R et al. Tolerance and pharmacokinetic interactions of rifabutin and azithromycin. 2001 Antimicrob. Agents Chemother. pmid:11302832
Odenholt I et al. Studies of the killing kinetics of benzylpenicillin, cefuroxime, azithromycin, and sparfloxacin on bacteria in the postantibiotic phase. 1997 Antimicrob. Agents Chemother. pmid:9371360
Kosowska-Shick K et al. Activity of DX-619 compared to other agents against viridans group streptococci, Streptococcus bovis, and Cardiobacterium hominis. 2006 Antimicrob. Agents Chemother. pmid:17043120
Phillips-Campbell R et al. Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. 2014 Antimicrob. Agents Chemother. pmid:24342653
Jang MO et al. Outcome of intravenous azithromycin therapy in patients with complicated scrub typhus compared with that of doxycycline therapy using propensity-matched analysis. 2014 Antimicrob. Agents Chemother. pmid:24366734
Sher AA et al. [Interactions in the system of copper ion-azalide (azithromycin)]. 1994 Sep-Oct Antibiot. Khimioter. pmid:7695446