Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Crohn Disease D003424 12 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Sinusitis D012852 9 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Penile Diseases D010409 2 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Psoriasis D011565 47 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Cross Infection D003428 9 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Waag DM Efficacy of postexposure therapy against glanders in mice. 2015 Antimicrob. Agents Chemother. pmid:25645854
Seral C et al. Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. 2003 Antimicrob. Agents Chemother. pmid:12604540
Odenholt-Tornqvist I et al. Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. 1995 Antimicrob. Agents Chemother. pmid:7695310
Roblin PM et al. In vitro activities of rifamycin derivatives ABI-1648 (Rifalazil, KRM-1648), ABI-1657, and ABI-1131 against Chlamydia trachomatis and recent clinical isolates of Chlamydia pneumoniae. 2003 Antimicrob. Agents Chemother. pmid:12604555
Rodvold KA et al. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. 1997 Antimicrob. Agents Chemother. pmid:9174209
Koeva M et al. An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. 2017 Antimicrob. Agents Chemother. pmid:28923873
Nahata MC et al. Pharmacokinetics of azithromycin in pediatric patients after oral administration of multiple doses of suspension. 1993 Antimicrob. Agents Chemother. pmid:8383944
Goldman RC et al. Role of protonated and neutral forms of macrolides in binding to ribosomes from gram-positive and gram-negative bacteria. 1990 Antimicrob. Agents Chemother. pmid:2159256
Feola DJ et al. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. 2010 Antimicrob. Agents Chemother. pmid:20231397
Riska PF et al. Genetic and culture-based approaches for detecting macrolide resistance in Chlamydia pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15328134
Kutlin A et al. In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model. 1999 Antimicrob. Agents Chemother. pmid:10471577
Bui KQ et al. Mononuclear and polymorphonuclear leukocyte dispositions of clarithromycin and azithromycin in AIDS patients requiring Mycobacterium avium complex prophylaxis. 1999 Antimicrob. Agents Chemother. pmid:10471584
Jacobsson S et al. Activity of the Novel Pleuromutilin Lefamulin (BC-3781) and Effect of Efflux Pump Inactivation on Multidrug-Resistant and Extensively Drug-Resistant Neisseria gonorrhoeae. 2017 Antimicrob. Agents Chemother. pmid:28893785
Zarantonelli L et al. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. 1999 Antimicrob. Agents Chemother. pmid:10508026
Sugie M et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. 2004 Antimicrob. Agents Chemother. pmid:14982769
Caceres SM et al. Enhanced in vitro formation and antibiotic resistance of nonattached Pseudomonas aeruginosa aggregates through incorporation of neutrophil products. 2014 Antimicrob. Agents Chemother. pmid:25182651
den Hollander JG et al. Comparison of pharmacodynamics of azithromycin and erythromycin in vitro and in vivo. 1998 Antimicrob. Agents Chemother. pmid:9527789
Hoffmann N et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. 2007 Antimicrob. Agents Chemother. pmid:17620382
Descours G et al. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila. 2017 Antimicrob. Agents Chemother. pmid:28069647
Kohlhoff SA et al. In vitro activity of a novel diaminopyrimidine compound, iclaprim, against Chlamydia trachomatis and C. pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15105151
Luke DR et al. Safety, toleration, and pharmacokinetics of intravenous azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8913468
Hogan PA and Sheehan DJ Macrolide susceptibility and beta-lactamase production among haemophilus influenzae isolates in the United States, 1996-1997. 1998 Antimicrob. Agents Chemother. pmid:9835536
Geisler WM et al. Randomized, double-blind, multicenter safety and efficacy study of rifalazil compared with azithromycin for treatment of uncomplicated genital Chlamydia trachomatis infection in women. 2014 Antimicrob. Agents Chemother. pmid:24798277
Mukherjee P et al. Emergence of high-level azithromycin resistance in Campylobacter jejuni isolates from pediatric diarrhea patients in Kolkata, India. 2014 Antimicrob. Agents Chemother. pmid:24777098
Achard A et al. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene. 2008 Antimicrob. Agents Chemother. pmid:18519724
Yoshioka D et al. Efficacy of β-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. 2016 Antimicrob. Agents Chemother. pmid:27480866
Jeong BH et al. Peak Plasma Concentration of Azithromycin and Treatment Responses in Mycobacterium avium Complex Lung Disease. 2016 Antimicrob. Agents Chemother. pmid:27480854
Noedl H et al. In vitro antimalarial activity of azithromycin, artesunate, and quinine in combination and correlation with clinical outcome. 2007 Antimicrob. Agents Chemother. pmid:17116669
Visalli MA et al. Susceptibility of penicillin-susceptible and -resistant pneumococci to dirithromycin compared with susceptibilities to erythromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin. 1997 Antimicrob. Agents Chemother. pmid:9303375
Ednie LM et al. Comparative antianaerobic activities of the ketolides HMR 3647 (RU 66647) and HMR 3004 (RU 64004). 1997 Antimicrob. Agents Chemother. pmid:9303406
Roblin PM et al. In vitro activity of trovafloxacin against Chlamydia pneumoniae. 1997 Antimicrob. Agents Chemother. pmid:9303410
Frank MO et al. In vitro demonstration of transport and delivery of antibiotics by polymorphonuclear leukocytes. 1992 Antimicrob. Agents Chemother. pmid:1336337
O'Reilly T et al. Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin. 1992 Antimicrob. Agents Chemother. pmid:1336342
Taylor WR et al. Tolerability of azithromycin as malaria prophylaxis in adults in northeast papua, indonesia. 2003 Antimicrob. Agents Chemother. pmid:12821468
Seral C et al. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. 2003 Antimicrob. Agents Chemother. pmid:12821480
Ravdin JI and Skilogiannis J In vitro susceptibilities of Entamoeba histolytica to azithromycin, CP-63,956, erythromycin, and metronidazole. 1989 Antimicrob. Agents Chemother. pmid:2548442
Bermudez LE and Young LS Activities of amikacin, roxithromycin, and azithromycin alone or in combination with tumor necrosis factor against Mycobacterium avium complex. 1988 Antimicrob. Agents Chemother. pmid:2847644
Salman S et al. Pharmacokinetics of Transfer of Azithromycin into the Breast Milk of African Mothers. 2015 Antimicrob. Agents Chemother. pmid:26711756
Viscardi RM et al. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose. 2013 Antimicrob. Agents Chemother. pmid:23439637
Cynamon MH et al. Comparative activities of azithromycin and clarithromycin against Mycobacterium avium infection in beige mice. 1994 Antimicrob. Agents Chemother. pmid:7979270
Ressner RA et al. Antimicrobial susceptibilities of geographically diverse clinical human isolates of Leptospira. 2008 Antimicrob. Agents Chemother. pmid:18411316
Pankuch GA et al. In vitro selection of resistance to four beta-lactams and azithromycin in Streptococcus pneumoniae. 1998 Antimicrob. Agents Chemother. pmid:9797225
Bergman M et al. Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae. 2006 Antimicrob. Agents Chemother. pmid:16940064
Gladue RP et al. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. 1989 Antimicrob. Agents Chemother. pmid:2543276
Araujo FG et al. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii. 1988 Antimicrob. Agents Chemother. pmid:2840017
Pereira MR et al. In vivo and in vitro antimalarial properties of azithromycin-chloroquine combinations that include the resistance reversal agent amlodipine. 2011 Antimicrob. Agents Chemother. pmid:21464242
Garey KW et al. Lack of effect of zafirlukast on the pharmacokinetics of azithromycin, clarithromycin, and 14-hydroxyclarithromycin in healthy volunteers. 1999 Antimicrob. Agents Chemother. pmid:10223928
Ouadrhiri Y et al. Mechanism of the intracellular killing and modulation of antibiotic susceptibility of Listeria monocytogenes in THP-1 macrophages activated by gamma interferon. 1999 Antimicrob. Agents Chemother. pmid:10223943
Könönen E et al. beta-lactamase production and antimicrobial susceptibility of oral heterogeneous Fusobacterium nucleatum populations in young children. 1999 Antimicrob. Agents Chemother. pmid:10223950
Jang MO et al. Outcome of intravenous azithromycin therapy in patients with complicated scrub typhus compared with that of doxycycline therapy using propensity-matched analysis. 2014 Antimicrob. Agents Chemother. pmid:24366734