Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Syphilis D013587 6 associated lipids
Hearing Disorders D006311 10 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Infant, Newborn, Diseases D007232 9 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Uterine Cervicitis D002575 3 associated lipids
Neutropenia D009503 15 associated lipids
Lung Diseases, Obstructive D008173 10 associated lipids
Urticaria D014581 13 associated lipids
Escherichia coli Infections D004927 17 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
Bingen E et al. Activity of telithromycin against penicillin-resistant Streptococcus pneumoniae isolates recovered from French children with invasive and noninvasive infections. 2003 Antimicrob. Agents Chemother. pmid:12821495
Matlow A et al. Susceptibilities of neonatal respiratory isolates of Ureaplasma urealyticum to antimicrobial agents. 1998 Antimicrob. Agents Chemother. pmid:9593171
Pettus K et al. In vitro assessment of dual drug combinations to inhibit growth of Neisseria gonorrhoeae. 2015 Antimicrob. Agents Chemother. pmid:25624328
Retsema J et al. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. 1987 Antimicrob. Agents Chemother. pmid:2449865
Nash KA and Inderlied CB Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. 1995 Antimicrob. Agents Chemother. pmid:8592991
Bohte R et al. Levels of azithromycin and alpha-1 acid glycoprotein in serum in patients with community-acquired pneumonia. 1995 Antimicrob. Agents Chemother. pmid:8593024
Rodvold KA et al. Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults. 2003 Antimicrob. Agents Chemother. pmid:12878504
Dunne MW et al. Efficacy of single-dose azithromycin in treatment of acute otitis media in children after a baseline tympanocentesis. 2003 Antimicrob. Agents Chemother. pmid:12878537
Girard AE et al. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. 1987 Antimicrob. Agents Chemother. pmid:2830841
Chang HR and Pechère JC In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. 1988 Antimicrob. Agents Chemother. pmid:2837140
Hammerschlag MR et al. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. 1992 Antimicrob. Agents Chemother. pmid:1324650
Ednie LM et al. Comparative activities of clarithromycin, erythromycin, and azithromycin against penicillin-susceptible and penicillin-resistant pneumococci. 1996 Antimicrob. Agents Chemother. pmid:8843313
Mulet X et al. Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants. 2009 Antimicrob. Agents Chemother. pmid:19188376
Cynamon MH and Klemens SP Activity of azithromycin against Mycobacterium avium infection in beige mice. 1992 Antimicrob. Agents Chemother. pmid:1329622
Seyama S et al. Amino Acid Substitution in the Major Multidrug Efflux Transporter Protein AcrB Contributes to Low Susceptibility to Azithromycin in Haemophilus influenzae. 2017 Antimicrob. Agents Chemother. pmid:28848006
Jacobs MR et al. Study design questions in treatment of children with acute otitis media. 2004 Antimicrob. Agents Chemother. pmid:15241848
Tateda K et al. Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891128
Kemp MW et al. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. 2014 Antimicrob. Agents Chemother. pmid:25155606
Hunt Gerardo S et al. Comparison of Etest to broth microdilution method for testing Streptococcus pneumoniae susceptibility to levofloxacin and three macrolides. 1996 Antimicrob. Agents Chemother. pmid:8891154
Zheng S et al. Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects. 2014 Antimicrob. Agents Chemother. pmid:25155592
Neoh CF et al. Rapid and sensitive liquid chromatography/mass spectrometry assay for caspofungin in human aqueous humor. 2010 Antimicrob. Agents Chemother. pmid:20660672
Engel JN Azithromycin-induced block of elementary body formation in Chlamydia trachomatis. 1992 Antimicrob. Agents Chemother. pmid:1280057
Saini H et al. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. 2017 Antimicrob. Agents Chemother. pmid:28031194
Girgis NI et al. Azithromycin versus ciprofloxacin for treatment of uncomplicated typhoid fever in a randomized trial in Egypt that included patients with multidrug resistance. 1999 Antimicrob. Agents Chemother. pmid:10348767
Binet R and Maurelli AT Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. 2007 Antimicrob. Agents Chemother. pmid:17908942
Wolf K and Malinverni R Effect of azithromycin plus rifampin versus that of azithromycin alone on the eradication of Chlamydia pneumoniae from lung tissue in experimental pneumonitis. 1999 Antimicrob. Agents Chemother. pmid:10348778
Ngo LY et al. Pharmacokinetics of azithromycin administered alone and with atovaquone in human immunodeficiency virus-infected children. The ACTG 254 Team. 1999 Antimicrob. Agents Chemother. pmid:10348786
Walsh M et al. In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. 1987 Antimicrob. Agents Chemother. pmid:3038010
Starner TD et al. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms. 2008 Antimicrob. Agents Chemother. pmid:17954687
Zasowski E et al. Relationship between time to clinical response and outcomes among Pneumonia Outcomes Research Team (PORT) risk class III and IV hospitalized patients with community-acquired pneumonia who received ceftriaxone and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752270
Rouse MS et al. Efficacy of azithromycin or clarithromycin for prophylaxis of viridans group streptococcus experimental endocarditis. 1997 Antimicrob. Agents Chemother. pmid:9257739
Wong MH et al. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752251
Marvig RL et al. Mutations in 23S rRNA confer resistance against azithromycin in Pseudomonas aeruginosa. 2012 Antimicrob. Agents Chemother. pmid:22644032
Clark CL et al. Capability of 11 antipneumococcal antibiotics to select for resistance by multistep and single-step methodologies. 2007 Antimicrob. Agents Chemother. pmid:17876003
Köhler T et al. Ribosome protection prevents azithromycin-mediated quorum-sensing modulation and stationary-phase killing of Pseudomonas aeruginosa. 2007 Antimicrob. Agents Chemother. pmid:17876004
Mandell GL and Coleman EJ Activities of antimicrobial agents against intracellular pneumococci. 2000 Antimicrob. Agents Chemother. pmid:10952618
Freeman CD et al. Intracellular and extracellular penetration of azithromycin into inflammatory and noninflammatory blister fluid. 1994 Antimicrob. Agents Chemother. pmid:7840585
Agacfidan A et al. In vitro activity of azithromycin (CP-62,993) against Chlamydia trachomatis and Chlamydia pneumoniae. 1993 Antimicrob. Agents Chemother. pmid:8239579
Tomazic J et al. In vivo administration of azithromycin affects lymphocyte activity in vitro. 1993 Antimicrob. Agents Chemother. pmid:8239585
Cantin L and Chamberland S In vitro evaluation of the activities of azithromycin alone and combined with pyrimethamine against Toxoplasma gondii. 1993 Antimicrob. Agents Chemother. pmid:8239619
Allen GP and Harris KA Resistance Selection in Shigella flexneri by Azithromycin, Ceftriaxone, Ciprofloxacin, Levofloxacin, and Moxifloxacin. 2017 Antimicrob. Agents Chemother. pmid:28483960
Barry AL et al. In vitro activities of azithromycin (CP 62,993), clarithromycin (A-56268; TE-031), erythromycin, roxithromycin, and clindamycin. 1988 Antimicrob. Agents Chemother. pmid:2840016
Critchley IA et al. National and regional assessment of antimicrobial resistance among community-acquired respiratory tract pathogens identified in a 2005-2006 U.S. Faropenem surveillance study. 2007 Antimicrob. Agents Chemother. pmid:17908940
Jacks SS et al. In vitro susceptibilities of Rhodococcus equi and other common equine pathogens to azithromycin, clarithromycin, and 20 other antimicrobials. 2003 Antimicrob. Agents Chemother. pmid:12709351
Roord JJ et al. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. 1996 Antimicrob. Agents Chemother. pmid:9124837
Gödeke J et al. Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa. 2013 Antimicrob. Agents Chemother. pmid:23318806
Nagaoka K et al. Macrolides inhibit Fusobacterium nucleatum-induced MUC5AC production in human airway epithelial cells. 2013 Antimicrob. Agents Chemother. pmid:23380724
Patel KB et al. Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891147
Lee N et al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: A randomized controlled trial. 2017 Antiviral Res. pmid:28535933
Allen G Evidence appraisal of Tita ATN, Szychowski JM, Boggess K, et al. Adjunctive azithromycin prophylaxis for cesarean delivery.: N Engl J Med. 2016;375:1231-1241. 2017 AORN J pmid:28034388