Azithramycine

Azithramycine is a lipid of Polyketides (PK) class. Azithramycine is associated with abnormalities such as Respiratory Tract Infections, Pneumonia, Lower respiratory tract infection, Infection and Nonspecific urethritis. The involved functions are known as Lysis, Selection, Genetic, Mutation, Relapse and Adaptation. Azithramycine often locates in Blood, Respiratory System, Genitourinary system, Back and Chest. The associated genes with Azithramycine are Genes, rRNA, Genome, RPL22 gene, OPRM1 gene and tryptic soy broth. The related lipids are Liposomes, Phosphatidylserines, Promega, Lipopolysaccharides and Steroids. The related experimental models are Mouse Model, Knock-out and Tissue Model.

Cross Reference

Introduction

To understand associated biological information of Azithramycine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Azithramycine?

Azithramycine is suspected in Infection, Pneumonia, Trachoma, Respiratory Tract Infections, Gonorrhea, Infectious disease of lung and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Azithramycine

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Airway Obstruction D000402 13 associated lipids
Stomach Ulcer D013276 75 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hearing Loss, Sensorineural D006319 8 associated lipids
Otitis Media D010033 12 associated lipids
Carcinoma, Basal Cell D002280 6 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Per page 10 20 50 100 | Total 276

PubChem Associated disorders and diseases

What pathways are associated with Azithramycine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Azithramycine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Azithramycine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Azithramycine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Azithramycine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Azithramycine?

Mouse Model

Mouse Model are used in the study 'Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa.' (Cory TJ et al., 2013), Mouse Model are used in the study 'Efficacy of azithromycin, clarithromycin and beta-lactam agents against experimentally induced bronchopneumonia caused by Haemophilus influenzae in mice.' (Miyazaki S et al., 2001), Mouse Model are used in the study 'Oral anti-pneumococcal activity and pharmacokinetic profiling of a novel peptide deformylase inhibitor.' (Gross M et al., 2004), Mouse Model are used in the study 'Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.' (Bala A et al., 2011) and Mouse Model are used in the study 'Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models.' (Girard D et al., 2005).

Knock-out

Knock-out are used in the study 'Influence of rhlR and lasR on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin.' (Bulman ZP et al., 2017) and Knock-out are used in the study 'Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.' (Mulet X et al., 2009).

Tissue Model

Tissue Model are used in the study 'Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.' (Zheng S et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Azithramycine

Download all related citations
Per page 10 20 50 100 | Total 4404
Authors Title Published Journal PubMed Link
ZaÄ­tseva EA et al. [Comparative study of the antimicrobial activity of pefloxacin, ciprofloxacin, norfloxacin and azithromycin with respect to Strains of Yersinia pseudotuberculosis]. 1996 Antibiot. Khimioter. pmid:8762820
Iakovlev SV and Ukhin SA [Azithromycin: general properties and regimen optimization based on pharmacokinetic and pharmacological parameters]. 2003 Antibiot. Khimioter. pmid:12803047
Gomberg MA and MashkilleÄ­son AL [Use of azithromycin in long existing urogenital chlamydia infections and its association with primary syphilis]. 1993 Antibiot. Khimioter. pmid:8060178
Sidorenko SV [Azithromycin--an antibiotic of the azalide group]. 1993 Antibiot. Khimioter. pmid:8060181
Lopatkin NA et al. [Use of azithromycin ("Sumamded") in the treatment of infectious-inflammatory diseases of the lower urinary tract and male genitalia]. 1993 Antibiot. Khimioter. pmid:8060189
Bingen E et al. Activity of telithromycin against penicillin-resistant Streptococcus pneumoniae isolates recovered from French children with invasive and noninvasive infections. 2003 Antimicrob. Agents Chemother. pmid:12821495
Pettus K et al. In vitro assessment of dual drug combinations to inhibit growth of Neisseria gonorrhoeae. 2015 Antimicrob. Agents Chemother. pmid:25624328
Retsema J et al. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. 1987 Antimicrob. Agents Chemother. pmid:2449865
Beringer P et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. 2005 Antimicrob. Agents Chemother. pmid:16304166
Ulrich M et al. Moxifloxacin and azithromycin but not amoxicillin protect human respiratory epithelial cells against streptococcus pneumoniae in vitro when administered up to 6 hours after challenge. 2005 Antimicrob. Agents Chemother. pmid:16304181
Saiz JC and Martín-Acebes MA Reply to Iannetta et al., "Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells". 2017 Antimicrob. Agents Chemother. pmid:28839084
Girard AE et al. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. 1987 Antimicrob. Agents Chemother. pmid:2830841
Iannetta M et al. Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells. 2017 Antimicrob. Agents Chemother. pmid:28839081
Chang HR and Pechère JC In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. 1988 Antimicrob. Agents Chemother. pmid:2837140
Hammerschlag MR et al. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. 1992 Antimicrob. Agents Chemother. pmid:1324650
Ednie LM et al. Comparative activities of clarithromycin, erythromycin, and azithromycin against penicillin-susceptible and penicillin-resistant pneumococci. 1996 Antimicrob. Agents Chemother. pmid:8843313
Cynamon MH and Klemens SP Activity of azithromycin against Mycobacterium avium infection in beige mice. 1992 Antimicrob. Agents Chemother. pmid:1329622
Marchisio P et al. Comparative study of once-weekly azithromycin and once-daily amoxicillin treatments in prevention of recurrent acute otitis media in children. 1996 Antimicrob. Agents Chemother. pmid:9124831
Seyama S et al. Amino Acid Substitution in the Major Multidrug Efflux Transporter Protein AcrB Contributes to Low Susceptibility to Azithromycin in Haemophilus influenzae. 2017 Antimicrob. Agents Chemother. pmid:28848006
Tateda K et al. Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. 1996 Antimicrob. Agents Chemother. pmid:8891128
Kemp MW et al. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. 2014 Antimicrob. Agents Chemother. pmid:25155606
Hunt Gerardo S et al. Comparison of Etest to broth microdilution method for testing Streptococcus pneumoniae susceptibility to levofloxacin and three macrolides. 1996 Antimicrob. Agents Chemother. pmid:8891154
Zheng S et al. Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects. 2014 Antimicrob. Agents Chemother. pmid:25155592
Engel JN Azithromycin-induced block of elementary body formation in Chlamydia trachomatis. 1992 Antimicrob. Agents Chemother. pmid:1280057
Saini H et al. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. 2017 Antimicrob. Agents Chemother. pmid:28031194
Walsh M et al. In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. 1987 Antimicrob. Agents Chemother. pmid:3038010
Starner TD et al. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms. 2008 Antimicrob. Agents Chemother. pmid:17954687
Turcinov D et al. Failure of azithromycin in treatment of Brill-Zinsser disease. 2000 Antimicrob. Agents Chemother. pmid:10817744
Tsitsika A et al. Single-oral-dose azithromycin prophylaxis against experimental streptococcal or staphylococcal aortic valve endocarditis. 2000 Antimicrob. Agents Chemother. pmid:10817749
Bin XX et al. Effect of azithromycin plus rifampin versus amoxicillin alone on eradication and inflammation in the chronic course of Chlamydia pneumoniae pneumonitis in mice. 2000 Antimicrob. Agents Chemother. pmid:10817751
Kuo CC et al. In vitro activities of azithromycin, clarithromycin, and other antibiotics against Chlamydia pneumoniae. 1996 Antimicrob. Agents Chemother. pmid:8913488
Pacifico L et al. Comparative efficacy and safety of 3-day azithromycin and 10-day penicillin V treatment of group A beta-hemolytic streptococcal pharyngitis in children. 1996 Antimicrob. Agents Chemother. pmid:8849215
Zasowski E et al. Relationship between time to clinical response and outcomes among Pneumonia Outcomes Research Team (PORT) risk class III and IV hospitalized patients with community-acquired pneumonia who received ceftriaxone and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752270
Wong MH et al. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. 2014 Antimicrob. Agents Chemother. pmid:24752251
Marvig RL et al. Mutations in 23S rRNA confer resistance against azithromycin in Pseudomonas aeruginosa. 2012 Antimicrob. Agents Chemother. pmid:22644032
Beale AS and Upshon PA Characteristics of murine model of genital infection with Chlamydia trachomatis and effects of therapy with tetracyclines, amoxicillin-clavulanic acid, or azithromycin. 1994 Antimicrob. Agents Chemother. pmid:7811001
Chinh NT et al. A randomized controlled comparison of azithromycin and ofloxacin for treatment of multidrug-resistant or nalidixic acid-resistant enteric fever. 2000 Antimicrob. Agents Chemother. pmid:10858343
Schwab JC et al. Localization of azithromycin in Toxoplasma gondii-infected cells. 1994 Antimicrob. Agents Chemother. pmid:7979295
Allen GP and Harris KA Resistance Selection in Shigella flexneri by Azithromycin, Ceftriaxone, Ciprofloxacin, Levofloxacin, and Moxifloxacin. 2017 Antimicrob. Agents Chemother. pmid:28483960
Caronzolo D et al. Glucocorticoids increase in vitro and in vivo activities of antibiotics against Chlamydophila pneumoniae. 2004 Antimicrob. Agents Chemother. pmid:15561871
Carter G et al. A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. 2004 Antimicrob. Agents Chemother. pmid:15561879
Roord JJ et al. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. 1996 Antimicrob. Agents Chemother. pmid:9124837
Wenisch C et al. Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry. 1996 Antimicrob. Agents Chemother. pmid:8878577
Gnarpe J et al. In vitro activities of azithromycin and doxycycline against 15 isolates of Chlamydia pneumoniae. 1996 Antimicrob. Agents Chemother. pmid:8843291
Dreses-Werringloer U et al. Effects of azithromycin and rifampin on Chlamydia trachomatis infection in vitro. 2001 Antimicrob. Agents Chemother. pmid:11600348
Tateda K et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. 2001 Antimicrob. Agents Chemother. pmid:11353657
Gödeke J et al. Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa. 2013 Antimicrob. Agents Chemother. pmid:23318806
Nagaoka K et al. Macrolides inhibit Fusobacterium nucleatum-induced MUC5AC production in human airway epithelial cells. 2013 Antimicrob. Agents Chemother. pmid:23380724
Bergman KL et al. Antimicrobial activities and postantibiotic effects of clarithromycin, 14-hydroxy-clarithromycin, and azithromycin in epithelial cell lining fluid against clinical isolates of haemophilus influenzae and Streptococcus pneumoniae. 1999 Antimicrob. Agents Chemother. pmid:10223956
Akova M et al. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. 1999 Antimicrob. Agents Chemother. pmid:10223958