clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Abnormalities, Drug-Induced D000014 10 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Abscess D000038 13 associated lipids
Achlorhydria D000126 1 associated lipids
Actinomycetales Infections D000193 4 associated lipids
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Bacterial Infections D001424 21 associated lipids
Bacteriuria D001437 7 associated lipids
Barrett Esophagus D001471 3 associated lipids
Bartonella Infections D001474 3 associated lipids
Body Weight D001835 333 associated lipids
Boutonneuse Fever D001907 5 associated lipids
Bradycardia D001919 13 associated lipids
Bronchial Spasm D001986 18 associated lipids
Bronchiectasis D001987 7 associated lipids
Bronchiolitis D001988 6 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Bronchitis D001991 6 associated lipids
Carcinoma, Basal Cell D002280 6 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Chlamydia Infections D002690 7 associated lipids
Chromoblastomycosis D002862 2 associated lipids
Colitis D003092 69 associated lipids
Confusion D003221 4 associated lipids
Conjunctival Neoplasms D003230 3 associated lipids
Conjunctivitis, Bacterial D003234 3 associated lipids
Cross Infection D003428 9 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Cysts D003560 4 associated lipids
Dermatitis, Exfoliative D003873 10 associated lipids
Drug Eruptions D003875 30 associated lipids
Dermatomycoses D003881 17 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diarrhea D003967 32 associated lipids
Diphtheria D004165 2 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Duodenitis D004382 4 associated lipids
Duodenogastric Reflux D004383 2 associated lipids
Dyspepsia D004415 5 associated lipids
Dyspnea D004417 10 associated lipids
Ecchymosis D004438 3 associated lipids
Empyema D004653 3 associated lipids
Empyema, Tuberculous D004654 1 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Shaulov A et al. Progressive refractory light chain amyloidosis and multiple myeloma patients are responsive to the addition of clarithromycin to IMiD based therapy. 2017 Am. J. Hematol. pmid:27804150
Malfertheiner P et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. 2017 Gut pmid:27707777
Reddy AB and Reddy ND Development of Multiple-Unit Floating Drug Delivery System of Clarithromycin: Formulation, in vitro Dissolution by Modified Dissolution Apparatus, in vivo Radiographic Studies in Human Volunteers. 2017 Drug Res (Stuttg) pmid:28449156
Aktas AH and Saridag AM Liquid Chromatographic-Chemometric Techniques for the Simultaneous HPLC Determination of Lansoprazole, Amoxicillin and Clarithromycin in Commercial Preparation. 2017 J Chromatogr Sci pmid:28449104
Itskoviz D et al. Smoking increases the likelihood of Helicobacter pylori treatment failure. 2017 Dig Liver Dis pmid:28427781
Koštrun S et al. Around the macrolide - Impact of 3D structure of macrocycles on lipophilicity and cellular accumulation. 2017 Eur J Med Chem pmid:28410508
Costa S et al. Efficacy and tolerability of culture-guided treatment for Helicobacter pylori infection. 2017 Eur J Gastroenterol Hepatol pmid:28877088
Pryjma M et al. Antagonism between Front-Line Antibiotics Clarithromycin and Amikacin in the Treatment of Mycobacterium abscessus Infections Is Mediated by the Gene. 2017 Antimicrob. Agents Chemother. pmid:28874379
Santos RP et al. induced rash and mucositis: a recently described entity. 2017 BMJ Case Rep pmid:28830900
Takahashi C et al. Morphological study of efficacy of clarithromycin-loaded nanocarriers for treatment of biofilm infection disease. 2017 Med Mol Morphol pmid:27119723
Ruiter R et al. Helicobacter pylori resistance in the Netherlands: a growing problem? 2017 Neth J Med pmid:29219812
Painsi C and Lange-Asschenfeldt B Image Gallery: Pink papules within a tattoo linked to Mycobacterium chelonae infection. 2017 Br. J. Dermatol. pmid:28731256
Mougari F et al. Selection of Resistance to Clarithromycin in Mycobacterium abscessus Subspecies. 2017 Antimicrob. Agents Chemother. pmid:27799212
Sharman MJ et al. Gastrokine mRNA expression in gastric tissue from dogs with helicobacter colonisation but without inflammatory change during treatment. 2017 Vet. Immunol. Immunopathol. pmid:28494926
O'Brien CR et al. Feline leprosy due to Candidatus 'Mycobacterium tarwinense':Further clinical and molecular characterisation of 15 previously reported cases and an additional 27 cases 2017 J. Feline Med. Surg. pmid:28438086
Tan B et al. Polaprezinc combined with clarithromycin-based triple therapy for Helicobacter pylori-associated gastritis: A prospective, multicenter, randomized clinical trial. 2017 PLoS ONE pmid:28407007
Chang JY et al. Triple therapy versus sequential therapy for the first-line Helicobacter pylori eradication. 2017 BMC Gastroenterol pmid:28109257
Sasaoka Y et al. Neonatal apnea with Chlamydia pneumoniae infection. 2017 Pediatr Int pmid:28102626
Lapa GB et al. Two approaches to the use of benzo[c][1,2]oxaboroles as active fragments for synthetic transformation of clarithromycin. 2017 J Enzyme Inhib Med Chem pmid:28097898
Chen PY et al. Letter: levofloxacin resistance - a challenge for treatment of Helicobacter pylori infection. Authors' reply. 2017 Aliment. Pharmacol. Ther. pmid:28074519