clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Uveitis, Anterior D014606 11 associated lipids
Whooping Cough D014917 6 associated lipids
Wound Infection D014946 12 associated lipids
Sexually Transmitted Diseases, Bacterial D015231 5 associated lipids
Mycobacterium avium-intracellulare Infection D015270 4 associated lipids
Discitis D015299 2 associated lipids
Leprosy, Borderline D015439 3 associated lipids
Leprosy, Lepromatous D015440 2 associated lipids
Eye Injuries, Penetrating D015807 2 associated lipids
Eye Infections D015817 1 associated lipids
Eye Infections, Bacterial D015818 3 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Prosthesis-Related Infections D016459 7 associated lipids
Bacteremia D016470 9 associated lipids
Helicobacter Infections D016481 21 associated lipids
Bronchial Hyperreactivity D016535 15 associated lipids
Purpura, Thrombocytopenic, Idiopathic D016553 4 associated lipids
Still's Disease, Adult-Onset D016706 2 associated lipids
Empyema, Pleural D016724 2 associated lipids
Ureaplasma Infections D016869 5 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Van Oijen AH et al. Review article: treatment of Helicobacter pylori infection with ranitidine bismuth citrate- or proton pump inhibitor-based triple therapies. 2000 Aliment. Pharmacol. Ther. pmid:10930892
Hurenkamp GJ et al. Equally high efficacy of 4, 7 and 10-day triple therapies to eradicate Helicobacter pylori infection in patients with ulcer disease. 2000 Aliment. Pharmacol. Ther. pmid:10930901
Lai KC et al. Ulcer-healing drugs are required after eradication of Helicobacter pylori in patients with gastric ulcer but not duodenal ulcer haemorrhage. 2000 Aliment. Pharmacol. Ther. pmid:10930902
Pilotto A et al. Pantoprazole versus one-week Helicobacter pylori eradication therapy for the prevention of acute NSAID-related gastroduodenal damage in elderly subjects. 2000 Aliment. Pharmacol. Ther. pmid:10930903
Gatta L et al. A 10-day levofloxacin-based triple therapy in patients who have failed two eradication courses. 2005 Aliment. Pharmacol. Ther. pmid:15963079
Wong BC et al. Three-day lansoprazole quadruple therapy for Helicobacter pylori-positive duodenal ulcers: a randomized controlled study. 2001 Aliment. Pharmacol. Ther. pmid:11380322
Meier R et al. Fish oil (Eicosapen) is less effective than metronidazole, in combination with pantoprazole and clarithromycin, for Helicobacter pylori eradication. 2001 Aliment. Pharmacol. Ther. pmid:11380323
Miehlke S et al. Randomized trial of rifabutin-based triple therapy and high-dose dual therapy for rescue treatment of Helicobacter pylori resistant to both metronidazole and clarithromycin. 2006 Aliment. Pharmacol. Ther. pmid:16842467
Neri M et al. Omeprazole, bismuth and clarithromycin in the sequential treatment of Helicobacter pylori infection. 1994 Aliment. Pharmacol. Ther. pmid:7986974
Spinzi G et al. Randomized study comparing omeprazole plus amoxycillin versus omeprazole plus clarithromycin for eradication of Helicobacter pylori. 1997 Aliment. Pharmacol. Ther. pmid:9146769
Peterson WL The role of antisecretory drugs in the treatment of Helicobacter pylori infection. 1997 Aliment. Pharmacol. Ther. pmid:9146787
Zullo A et al. High eradication rates of Helicobacter pylori with a new sequential treatment. 2003 Aliment. Pharmacol. Ther. pmid:12641522
Lane JA et al. Randomised clinical trial: Helicobacter pylori eradication is associated with a significantly increased body mass index in a placebo-controlled study. 2011 Aliment. Pharmacol. Ther. pmid:21366634
Wong BC et al. One-week ranitidine bismuth citrate-based triple therapy for the eradication of Helicobacter pylori in Hong Kong with high prevalence of metronidazole resistance. 2001 Aliment. Pharmacol. Ther. pmid:11207516
Fakheri H et al. Clarithromycin vs. furazolidone in quadruple therapy regimens for the treatment of Helicobacter pylori in a population with a high metronidazole resistance rate. 2001 Aliment. Pharmacol. Ther. pmid:11207517
Lamouliatte H et al. Double vs. single dose of pantoprazole in combination with clarithromycin and amoxycillin for 7 days, in eradication of Helicobacter pylori in patients with non-ulcer dyspepsia. 1999 Aliment. Pharmacol. Ther. pmid:10571611
Nagahara A et al. Five-day proton pump inhibitor-based quadruple therapy regimen is more effective than 7-day triple therapy regimen for Helicobacter pylori infection. 2001 Aliment. Pharmacol. Ther. pmid:11207518
Fischbach LA et al. Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-Helicobacter pylori quadruple therapies. 2004 Aliment. Pharmacol. Ther. pmid:15569109
Gu Q et al. Effect of cyclo-oxygenase inhibitors on Helicobacter pylori susceptibility to metronidazole and clarithromycin. 2004 Aliment. Pharmacol. Ther. pmid:15352916
Bazzoli F et al. Low-dose lansoprazole and clarithromycin plus metronidazole vs. full-dose lansoprazole and clarithromycin plus amoxicillin for eradication of Helicobacter pylori infection. 2002 Aliment. Pharmacol. Ther. pmid:11856090
Kim JS et al. Effect of Helicobacter pylori eradication on duodenal ulcer scar in patients with no clinical history of duodenal ulcer. 2002 Aliment. Pharmacol. Ther. pmid:11860410
Poon SK et al. Primary resistance to antibiotics and its clinical impact on the efficacy of Helicobacter pylori lansoprazole-based triple therapies. 2002 Aliment. Pharmacol. Ther. pmid:11860412
Peitz U et al. High rate of post-therapeutic resistance after failure of macrolide-nitroimidazole triple therapy to cure Helicobacter pylori infection: impact of two second-line therapies in a randomized study. 2002 Aliment. Pharmacol. Ther. pmid:11860415
Sheu BS et al. Impact of supplement with Lactobacillus- and Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. 2002 Aliment. Pharmacol. Ther. pmid:12197847
Bortolotti M et al. Effects of oral clarithromycin and amoxycillin on interdigestive gastrointestinal motility of patients with functional dyspepsia and Helicobacter pylori gastritis. 1998 Aliment. Pharmacol. Ther. pmid:9798808
Calvet X et al. A meta-analysis of short versus long therapy with a proton pump inhibitor, clarithromycin and either metronidazole or amoxycillin for treating Helicobacter pylori infection. 2000 Aliment. Pharmacol. Ther. pmid:10792124
John Albert M et al. High prevalence and level of resistance to metronidazole, but lack of resistance to other antimicrobials in Helicobacter pylori, isolated from a multiracial population in Kuwait. 2006 Aliment. Pharmacol. Ther. pmid:17059517
Furuta T et al. Effect of MDR1 C3435T polymorphism on cure rates of Helicobacter pylori infection by triple therapy with lansoprazole, amoxicillin and clarithromycin in relation to CYP 2C19 genotypes and 23S rRNA genotypes of H. pylori. 2007 Aliment. Pharmacol. Ther. pmid:17697203
Goodgame RW et al. Randomized controlled trial of clarithromycin and ethambutol in the treatment of Crohn's disease. 2001 Aliment. Pharmacol. Ther. pmid:11736715
Malfertheiner P et al. Helicobacter pylori eradication and gastric ulcer healing--comparison of three pantoprazole-based triple therapies. 2003 Aliment. Pharmacol. Ther. pmid:12752349
Gené E et al. Triple vs. quadruple therapy for treating Helicobacter pylori infection: a meta-analysis. 2003 Aliment. Pharmacol. Ther. pmid:12752350
Veldhuyzen Van Zanten S et al. One-week triple therapy with esomeprazole provides effective eradication of Helicobacter pylori in duodenal ulcer disease. 2000 Aliment. Pharmacol. Ther. pmid:11121908
Isomoto H et al. 5-day vs. 7-day triple therapy with rabeprazole, clarithromycin and amoxicillin for Helicobacter pylori eradication. 2000 Aliment. Pharmacol. Ther. pmid:11121910
Canducci F et al. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. 2000 Aliment. Pharmacol. Ther. pmid:11121911
Toracchio S et al. Role of antimicrobial susceptibility testing on efficacy of triple therapy in Helicobacter pylori eradication. 2000 Aliment. Pharmacol. Ther. pmid:11121913
Kim YS et al. Randomised clinical trial: the efficacy of a 10-day sequential therapy vs. a 14-day standard proton pump inhibitor-based triple therapy for Helicobacter pylori in Korea. 2011 Aliment. Pharmacol. Ther. pmid:21923713
You JH et al. Economic analysis of four triple regimens for the treatment of Helicobacter pylori-related peptic ulcer disease in in-patient and out-patient settings in Hong Kong. 2001 Aliment. Pharmacol. Ther. pmid:11421876
Kawabata H et al. Effect of different proton pump inhibitors, differences in CYP2C19 genotype and antibiotic resistance on the eradication rate of Helicobacter pylori infection by a 1-week regimen of proton pump inhibitor, amoxicillin and clarithromycin. 2003 Aliment. Pharmacol. Ther. pmid:12534411
Gisbert JP et al. Proton pump inhibitor, clarithromycin and either amoxycillin or nitroimidazole: a meta-analysis of eradication of Helicobacter pylori. 2000 Aliment. Pharmacol. Ther. pmid:11012477
Catalano F et al. Helicobacter pylori-positive duodenal ulcer: three-day antibiotic eradication regimen. 2000 Aliment. Pharmacol. Ther. pmid:11012478
Gomollón F et al. Third line treatment for Helicobacter pylori: a prospective, culture-guided study in peptic ulcer patients. 2000 Aliment. Pharmacol. Ther. pmid:11012479
Graham DY et al. Ranitidine bismuth citrate, tetracycline, clarithromycin twice-a-day triple therapy for clarithromycin susceptible Helicobacter pylori infection. 1999 Aliment. Pharmacol. Ther. pmid:10102946
Zanten SJ et al. The DU-MACH study: eradication of Helicobacter pylori and ulcer healing in patients with acute duodenal ulcer using omeprazole based triple therapy. 1999 Aliment. Pharmacol. Ther. pmid:10102960
Van der Wouden EJ et al. The influence of metronidazole resistance on the efficacy of ranitidine bismuth citrate triple therapy regimens for Helicobacter pylori infection. 1999 Aliment. Pharmacol. Ther. pmid:10102961
Wong BC et al. Triple therapy for Helicobacter pylori eradication is more effective than long-term maintenance antisecretory treatment in the prevention of recurrence of duodenal ulcer: a prospective long-term follow-up study. 1999 Aliment. Pharmacol. Ther. pmid:10102962
Xiao SD et al. High cure rate of Helicobacter pylori infection using tripotassium dicitrato bismuthate, furazolidone and clarithromycin triple therapy for 1 week. 1999 Aliment. Pharmacol. Ther. pmid:10102963
Liu WZ et al. Furazolidone-containing short-term triple therapies are effective in the treatment of Helicobacter pylori infection. 1999 Aliment. Pharmacol. Ther. pmid:10102964
Nista EC et al. Levofloxacin-based triple therapy vs. quadruple therapy in second-line Helicobacter pylori treatment: a randomized trial. 2003 Aliment. Pharmacol. Ther. pmid:12969089
Feydt-Schmidt A et al. Fluorescence in situ hybridization vs. epsilometer test for detection of clarithromycin-susceptible and clarithromycin-resistant Helicobacter pylori strains in gastric biopsies from children. 2002 Aliment. Pharmacol. Ther. pmid:12452940
Isomoto H et al. High-dose rabeprazole-amoxicillin versus rabeprazole-amoxicillin-metronidazole as second-line treatment after failure of the Japanese standard regimen for Helicobacter pylori infection. 2003 Aliment. Pharmacol. Ther. pmid:12848631