clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Tenosynovitis D013717 3 associated lipids
Splenic Diseases D013158 5 associated lipids
Hernia, Hiatal D006551 3 associated lipids
Chlamydial Pneumonia D061387 2 associated lipids
Leprosy, Lepromatous D015440 2 associated lipids
Gastritis, Hypertrophic D005758 1 associated lipids
Hypoproteinemia D007019 1 associated lipids
Cutaneous Fistula D017577 1 associated lipids
Tuberculosis, Ocular D014392 1 associated lipids
Euthyroid Sick Syndromes D005067 1 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Kamada T et al. Cetraxate, a mucosal protective agent, combined with omeprazole, amoxycillin, and clarithromycin increases the eradication rate of helicobacter pylori in smokers. 2000 Aliment. Pharmacol. Ther. pmid:10930905
Gatta L et al. A 10-day levofloxacin-based triple therapy in patients who have failed two eradication courses. 2005 Aliment. Pharmacol. Ther. pmid:15963079
Sierra F et al. Pilot study: miscellaneous therapy is highly successful for Helicobacter pylori eradication. 2013 Aliment. Pharmacol. Ther. pmid:23656465
Veldhuyzen Van Zanten S et al. One-week triple therapy with esomeprazole, clarithromycin and metronidazole provides effective eradication of Helicobacter pylori infection. 2003 Aliment. Pharmacol. Ther. pmid:12786632
Nagahara A et al. Five-day proton pump inhibitor-based quadruple therapy regimen is more effective than 7-day triple therapy regimen for Helicobacter pylori infection. 2001 Aliment. Pharmacol. Ther. pmid:11207518
Bardhan KD et al. Triple therapy for Helicobacter pylori eradication: a comparison of pantoprazole once versus twice daily. 2000 Aliment. Pharmacol. Ther. pmid:10632646
Fischbach LA et al. Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-Helicobacter pylori quadruple therapies. 2004 Aliment. Pharmacol. Ther. pmid:15569109
Axon AT et al. Ranitidine bismuth citrate and clarithromycin twice daily in the eradication of Helicobacter pylori. 1997 Aliment. Pharmacol. Ther. pmid:9042977
Bazzoli F et al. Evaluation of short-term low-dose triple therapy for the eradication of Helicobacter pylori by factorial design in a randomized, double-blind, controlled study. 1998 Aliment. Pharmacol. Ther. pmid:9663723
Scott BB Bismuth-containing single-antibiotic 1-week triple therapy for Helicobacter pylori eradication. 1998 Aliment. Pharmacol. Ther. pmid:9570263
Sheu BS et al. The selection of triple therapy for Helicobacter pylori eradication in chronic renal insufficiency. 2003 Aliment. Pharmacol. Ther. pmid:12755841
Cammarota G et al. Helicobacter pylori eradication using one-week low-dose lansoprazole plus amoxycillin and either clarithromycin or azithromycin. 1996 Aliment. Pharmacol. Ther. pmid:8971300
Pilotto A et al. Cure of Helicobacter pylori infection in the elderly: effects of eradication on gastritis and serological markers. 1996 Aliment. Pharmacol. Ther. pmid:8971305
Gudjonsson H et al. High Helicobacter pylori eradication rate with a 1-week regimen containing ranitidine bismuth citrate. 1998 Aliment. Pharmacol. Ther. pmid:9845401
Tam YH et al. Seven-day is more effective than 4-day ranitidine bismuth citrate-based triple therapy in eradication of Helicobacter pylori in children: a prospective randomized study. 2006 Aliment. Pharmacol. Ther. pmid:16803605
Nista EC et al. Levofloxacin-based triple therapy vs. quadruple therapy in second-line Helicobacter pylori treatment: a randomized trial. 2003 Aliment. Pharmacol. Ther. pmid:12969089
Klok RM et al. Continued utilization and costs of proton pump inhibitors after Helicobacter pylori eradication in chronic users of gastrointestinal drugs. 2002 Aliment. Pharmacol. Ther. pmid:11966514
Tsuzuki T et al. Clarithromycin increases the release of heat shock protein B from Helicobacter pylori. 2002 Aliment. Pharmacol. Ther. pmid:11966545
Isomoto H et al. High-dose rabeprazole-amoxicillin versus rabeprazole-amoxicillin-metronidazole as second-line treatment after failure of the Japanese standard regimen for Helicobacter pylori infection. 2003 Aliment. Pharmacol. Ther. pmid:12848631
Ellenrieder V et al. Influence of clarithromycin dosage on pantoprazole combined triple therapy for eradication of Helicobacter pylori. 1998 Aliment. Pharmacol. Ther. pmid:9701524