clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Chlamydophila Infections D023521 4 associated lipids
Desulfovibrionaceae Infections D045824 5 associated lipids
Renal Insufficiency D051437 8 associated lipids
Immune Reconstitution Inflammatory Syndrome D054019 1 associated lipids
Buruli Ulcer D054312 1 associated lipids
Extensively Drug-Resistant Tuberculosis D054908 1 associated lipids
Leprosy, Paucibacillary D056005 2 associated lipids
Upper Extremity Deep Vein Thrombosis D056824 1 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Plaque, Atherosclerotic D058226 7 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Kihira K et al. Rabeprazole, amoxycillin and low- or high-dose clarithromycin for cure of Helicobacter pylori infection. 2000 Aliment. Pharmacol. Ther. pmid:10930904
Kamada T et al. Cetraxate, a mucosal protective agent, combined with omeprazole, amoxycillin, and clarithromycin increases the eradication rate of helicobacter pylori in smokers. 2000 Aliment. Pharmacol. Ther. pmid:10930905
Savarino V et al. OAM for cure of Helicobacter pylori infection. 2000 Aliment. Pharmacol. Ther. pmid:10930908
Perri F et al. Ranitidine bismuth citrate-based triple therapies after failure of the standard 'Maastricht triple therapy': a promising alternative to the quadruple therapy? 2001 Aliment. Pharmacol. Ther. pmid:11421877
Perri F et al. Predictors of failure of Helicobacter pylori eradication with the standard 'Maastricht triple therapy'. 2001 Aliment. Pharmacol. Ther. pmid:11421878
Pilotto A et al. Cure of Helicobacter pylori infection in elderly patients: comparison of low versus high doses of clarithromycin in combination with amoxicillin and pantoprazole. 2001 Aliment. Pharmacol. Ther. pmid:11421879
Huang J et al. Randomised controlled trial: sequential vs. standard triple therapy for Helicobacter pylori infection in Chinese children-a multicentre, open-labelled study. 2013 Aliment. Pharmacol. Ther. pmid:24117692
Molina-Infante J et al. Clinical trial: clarithromycin vs. levofloxacin in first-line triple and sequential regimens for Helicobacter pylori eradication. 2010 Aliment. Pharmacol. Ther. pmid:20180787
Harb AH et al. Systematic review and meta-analysis: full- vs. half-dose anti-microbials in clarithromycin-based regimens for Helicobacter pylori eradication. 2015 Aliment. Pharmacol. Ther. pmid:26011564
Veldhuyzen Van Zanten S et al. One-week triple therapy with esomeprazole, clarithromycin and metronidazole provides effective eradication of Helicobacter pylori infection. 2003 Aliment. Pharmacol. Ther. pmid:12786632
Bardhan KD et al. Triple therapy for Helicobacter pylori eradication: a comparison of pantoprazole once versus twice daily. 2000 Aliment. Pharmacol. Ther. pmid:10632646
Cammarota G et al. Five-day regimens containing ranitidine bismuth citrate plus high-dose clarithromycin and either amoxycillin or tinidazole for Helicobacter pylori infection. 2000 Aliment. Pharmacol. Ther. pmid:10632648
Gasbarrini A et al. Efficacy of a multistep strategy for Helicobacter pylori eradication. 2000 Aliment. Pharmacol. Ther. pmid:10632649
Chan FK et al. Salvage therapies after failure of Helicobacter pylori eradication with ranitidine bismuth citrate-based therapies. 2000 Aliment. Pharmacol. Ther. pmid:10632651
Pipkin GA et al. Review article: one-week clarithromycin triple therapy regimens for eradication of Helicobacter pylori. 1998 Aliment. Pharmacol. Ther. pmid:9768524
Tomita T et al. Successful eradication of Helicobacter pylori prevents relapse of peptic ulcer disease. 2002 Aliment. Pharmacol. Ther. pmid:11966543
Axon AT et al. Ranitidine bismuth citrate and clarithromycin twice daily in the eradication of Helicobacter pylori. 1997 Aliment. Pharmacol. Ther. pmid:9042977
Labenz J et al. One-week low-dose triple therapy for Helicobacter pylori is sufficient for relief from symptoms and healing of duodenal ulcers. 1997 Aliment. Pharmacol. Ther. pmid:9042978
Labenz J et al. Efficacy and tolerability of a one-week triple therapy consisting of pantoprazole, clarithromycin and amoxycillin for cure of Helicobacter pylori infection in patients with duodenal ulcer. 1997 Aliment. Pharmacol. Ther. pmid:9042979
Calvet X et al. One-week triple vs. quadruple therapy for Helicobacter pylori infection - a randomized trial. 2002 Aliment. Pharmacol. Ther. pmid:12144575
Basset C et al. Helicobacter pylori infection: anything new should we know? 2004 Aliment. Pharmacol. Ther. pmid:15335411
Savarino V et al. Optimal duration of therapy combining ranitidine bismuth citrate with clarithromycin and metronidazole in the eradication of Helicobacter pylori infection. 1999 Aliment. Pharmacol. Ther. pmid:9892878
Spinzi GC et al. Comparison of omeprazole and lansoprazole in short-term triple therapy for Helicobacter pylori infection. 1998 Aliment. Pharmacol. Ther. pmid:9663722
Bazzoli F et al. Evaluation of short-term low-dose triple therapy for the eradication of Helicobacter pylori by factorial design in a randomized, double-blind, controlled study. 1998 Aliment. Pharmacol. Ther. pmid:9663723
Pozzato P et al. Ranitidine bismuth citrate plus clarithromycin 7-day regimen is effective in eradicating Helicobacter pylori in patients with duodenal ulcer. 1998 Aliment. Pharmacol. Ther. pmid:9663724
Goh KL et al. Comparison of two 1-week low-dose omeprazole triple therapies--optimal treatment for Helicobacter pylori infection? 1997 Aliment. Pharmacol. Ther. pmid:9663838
Kolkman JJ et al. Ranitidine bismuth citrate with clarithromycin versus omeprazole with amoxycillin in the cure of Helicobacter pylori infection. 1997 Aliment. Pharmacol. Ther. pmid:9663840
Lionetti E et al. Lactobacillus reuteri therapy to reduce side-effects during anti-Helicobacter pylori treatment in children: a randomized placebo controlled trial. 2006 Aliment. Pharmacol. Ther. pmid:17032283
Laurent J et al. A randomized comparison of four omeprazole-based triple therapy regimens for the eradication of Helicobacter pylori in patients with non-ulcer dyspepsia. 2001 Aliment. Pharmacol. Ther. pmid:11683693
O'Connor HJ et al. Lansoprazole triple therapy for Helicobacter pylori--is 5 days enough? 1998 Aliment. Pharmacol. Ther. pmid:9570262
Scott BB Bismuth-containing single-antibiotic 1-week triple therapy for Helicobacter pylori eradication. 1998 Aliment. Pharmacol. Ther. pmid:9570263
Goodgame RW et al. Randomized controlled trial of clarithromycin and ethambutol in the treatment of Crohn's disease. 2001 Aliment. Pharmacol. Ther. pmid:11736715
Sheu BS et al. The selection of triple therapy for Helicobacter pylori eradication in chronic renal insufficiency. 2003 Aliment. Pharmacol. Ther. pmid:12755841
Gudjonsson H et al. High Helicobacter pylori eradication rate with a 1-week regimen containing ranitidine bismuth citrate. 1998 Aliment. Pharmacol. Ther. pmid:9845401
De Francesco V et al. Effectiveness and pharmaceutical cost of sequential treatment for Helicobacter pylori in patients with non-ulcer dyspepsia. 2004 Aliment. Pharmacol. Ther. pmid:15113366
Koivisto TT et al. Primary Helicobacter pylori resistance to metronidazole and clarithromycin in the Finnish population. 2004 Aliment. Pharmacol. Ther. pmid:15113368
Gisbert JP and Calvet X Review article: the effectiveness of standard triple therapy for Helicobacter pylori has not changed over the last decade, but it is not good enough. 2011 Aliment. Pharmacol. Ther. pmid:22017749
Pellegrini M et al. Is a long-term ranitidine-based triple therapy against Helicobacter pylori only a heritage of the past? A prospective, randomized clinicopharmacological study. 2005 Aliment. Pharmacol. Ther. pmid:16098001
Huang J and Hunt RH Clarithromycin-based triple therapies. 1999 Aliment. Pharmacol. Ther. pmid:10102978
Osato MS et al. Comparative efficacy of new investigational agents against Helicobacter pylori. 2001 Aliment. Pharmacol. Ther. pmid:11284777
Sheu BS et al. Esomeprazole 40 mg twice daily in triple therapy and the efficacy of Helicobacter pylori eradication related to CYP2C19 metabolism. 2005 Aliment. Pharmacol. Ther. pmid:15691303
Klok RM et al. Continued utilization and costs of proton pump inhibitors after Helicobacter pylori eradication in chronic users of gastrointestinal drugs. 2002 Aliment. Pharmacol. Ther. pmid:11966514
Tsuzuki T et al. Clarithromycin increases the release of heat shock protein B from Helicobacter pylori. 2002 Aliment. Pharmacol. Ther. pmid:11966545
Weldon MJ et al. A seven-day Helicobacter pylori treatment regimen using clarithromycin, omeprazole and tripotassium dicitrato bismuthate. 1996 Aliment. Pharmacol. Ther. pmid:8791951
Tursi A et al. Low-dose omeprazole plus clarithromycin and either tinidazole or amoxycillin for Helicobacter pylori infection. 1996 Aliment. Pharmacol. Ther. pmid:8791952
Gisbert JP et al. Helicobacter pylori first-line treatment and rescue options in patients allergic to penicillin. 2005 Aliment. Pharmacol. Ther. pmid:16268980
Ellenrieder V et al. Influence of clarithromycin dosage on pantoprazole combined triple therapy for eradication of Helicobacter pylori. 1998 Aliment. Pharmacol. Ther. pmid:9701524
Miwa H et al. Is antimicrobial susceptibility testing necessary before second-line treatment for Helicobacter pylori infection? 2003 Aliment. Pharmacol. Ther. pmid:12823158
Lim AG et al. Helicobacter pylori eradication using a 7-day regimen of low-dose clarithromycin, lansoprazole and amoxycillin. 1997 Aliment. Pharmacol. Ther. pmid:9218079
Zullo A et al. Clarithromycin or levofloxacin in the sequential therapy for H. pylori eradication? 2010 Aliment. Pharmacol. Ther. pmid:20518756