clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Arthritis D001168 41 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Abscess D000038 13 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Gastritis D005756 27 associated lipids
Heart Failure D006333 36 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Mosdósi B et al. Severe acrocyanosis precipitated by cold agglutinin secondary to infection with Mycoplasma pneumoniae in a pediatric patient. 2017 Croat. Med. J. pmid:29308834
Zhang X and Hu C Selecting optimal columns for clarithromycin impurity analysis according to the quantitative relationship of hydrophobic subtraction model. 2017 J Pharm Biomed Anal pmid:28024686
Addo KK et al. Genotyping and drug susceptibility testing of mycobacterial isolates from population-based tuberculosis prevalence survey in Ghana. 2017 BMC Infect. Dis. pmid:29197331
Liu W et al. Rapid detection of mutations in erm(41) and rrl associated with clarithromycin resistance in Mycobacterium abscessus complex by denaturing gradient gel electrophoresis. 2017 J. Microbiol. Methods pmid:29079298
Koh WJ et al. Mycobacterial Characteristics and Treatment Outcomes in Mycobacterium abscessus Lung Disease. 2017 Clin. Infect. Dis. pmid:28011608
Chang CH et al. Non-Tuberculous Mycobacteria Infection Following Autologous Fat Grafting on the Face. 2017 Aesthet Surg J pmid:29045552
Çekin AH et al. Use of probiotics as an adjuvant to sequential H. pylori eradication therapy: impact on eradication rates, treatment resistance, treatment-related side effects, and patient compliance. 2017 Turk J Gastroenterol pmid:28007678
Ikeue T et al. Pleuritis Caused by Mycobacterium kyorinense without Pulmonary Involvement. 2017 Intern. Med. pmid:28924121
Panozzo C et al. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants. 2017 Biochim. Biophys. Acta pmid:28888990
Baluch A et al. Successful management of Mycobacterium haemophilum lower extremity cutaneous infection in a matched-unrelated donor stem cell transplant recipient. 2017 Transpl Infect Dis pmid:27775824
Xu YF et al. and Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection. 2017 Antimicrob. Agents Chemother. pmid:28320722
Yang YJ et al. Ten days of levofloxacin-containing concomitant therapy can achieve effective Helicobacter pylori eradication in patients with type 2 diabetes. 2017 Ann. Med. pmid:28266875
Geng X et al. The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. 2017 Antimicrob. Agents Chemother. pmid:28242673
Emmanuel R et al. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. 2017 Microb. Pathog. pmid:29101061
Larsen EL et al. Clarithromycin, trimethoprim, and penicillin and oxidative nucleic acid modifications in humans: randomised, controlled trials. 2017 Br J Clin Pharmacol pmid:28185274
Ono S et al. Vonoprazan improves the efficacy of Helicobacter pylori eradication therapy with a regimen consisting of clarithromycin and metronidazole in patients allergic to penicillin. 2017 Helicobacter pmid:28098408
Gouin-Thibault I et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. 2017 J. Thromb. Haemost. pmid:27893182
Park J et al. Progression and Treatment Outcomes of Lung Disease Caused by Mycobacterium abscessus and Mycobacterium massiliense. 2017 Clin. Infect. Dis. pmid:28011609
Park SM et al. Randomized clinical trial comparing 10- or 14-day sequential therapy and 10- or 14-day concomitant therapy for the first line empirical treatment of Helicobacter pylori infection. 2017 J. Gastroenterol. Hepatol. pmid:27505301
Ishiguro N et al. Therapeutic efficacy of azithromycin, clarithromycin, minocycline and tosufloxacin against macrolide-resistant and macrolide-sensitive Mycoplasma pneumoniae pneumonia in pediatric patients. 2017 PLoS ONE pmid:28288170
Attaran B et al. Effect of biofilm formation by clinical isolates of on the efflux-mediated resistance to commonly used antibiotics. 2017 World J. Gastroenterol. pmid:28275296
Yoon H et al. Eradication Downregulates Cellular Inhibitor of Apoptosis Protein 2 in Gastric Carcinogenesis. 2017 Gut Liver pmid:27282269
Boal Carvalho P et al. Randomized Controlled Trial for Helicobacter pylori Eradication in a Naive Portuguese Population: Is Sequential Treatment Superior to Triple Therapy in Real World Clinical Setting? 2017 Acta Med Port pmid:28550827
Shah SA et al. Clarithromycin inhibits TNF-α-induced MUC5AC mucin gene expression via the MKP-1-p38MAPK-dependent pathway. 2017 Int. Immunopharmacol. pmid:28550735
Osaki T et al. Usefulness of detection of clarithromycin-resistant Helicobacter pylori from fecal specimens for young adults treated with eradication therapy. 2017 Helicobacter pmid:28544222
Chang CT et al. Antibiotic treatment of zebrafish mycobacteriosis: tolerance and efficacy of treatments with tigecycline and clarithromycin. 2017 J. Fish Dis. pmid:28422304
Furuya H et al. SAPHO syndrome-like presentation of disseminated nontuberculous mycobacterial infection in a case with neutralizing anti-IFNγ autoantibody. 2017 Rheumatology (Oxford) pmid:28371927
Jakubů V et al. Trends in the Minimum Inhibitory Concentrations of Erythromycin, Clarithromycin, Azithromycin, Ciprofloxacin, and Trimethoprim/Sulfamethoxazole for Strains of Bordetella pertussis isolated in the Czech Republic in 1967-2015. 2017 Cent. Eur. J. Public Health pmid:29346850
Vaz AM et al. Capsule endoscopy in the diagnosis of disseminated complex infection. 2017 BMJ Case Rep pmid:29167222
Lee H et al. Concomitant, sequential, and 7-day triple therapy in first-line treatment of Helicobacter pylori infection in Korea: study protocol for a randomized controlled trial. 2017 Trials pmid:29149904
Ye JF et al. Evaluation of first-line bismuth-containing 7-day concomitant quintuple therapy for Helicobacter pylori eradication. 2017 J Dig Dis pmid:29119724
Chang KH et al. Comparison of antibiotic regimens in preterm premature rupture of membranes: neonatal morbidity and 2-year follow-up of neurologic outcome. 2017 J. Matern. Fetal. Neonatal. Med. pmid:27687157
Sotto RB et al. Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC-MS environmental metabolomics. 2017 J. Hazard. Mater. pmid:28623724
Liatsos C and Leontiadis GII The "report card" to grade H. Pylori treatment regimens: is it achievable in real-world in areas with high clarithromycin resistance? 2017 J Gastrointestin Liver Dis pmid:28617893
Chew CA et al. The diagnosis and management of H. pylori infection in Singapore. 2017 Singapore Med J pmid:28536725
Gunnarsdottir AI et al. Antibiotic susceptibility of Helicobacter pylori in Iceland. 2017 Infect Dis (Lond) pmid:28440099
Manniello MD et al. Clarithromycin and N-acetylcysteine co-spray-dried powders for pulmonary drug delivery: A focus on drug solubility. 2017 Int J Pharm pmid:28377314
Moon SH et al. Novel Linear Lipopeptide Paenipeptins with Potential for Eradicating Biofilms and Sensitizing Gram-Negative Bacteria to Rifampicin and Clarithromycin. 2017 J. Med. Chem. pmid:29136469
Carneiro MDS et al. Lack of association between rrl and erm(41) mutations and clarithromycin resistance in Mycobacterium abscessus complex. 2017 Mem. Inst. Oswaldo Cruz pmid:29091138
Oikawa R et al. Enrichment of Helicobacter pylori mutant strains after eradication therapy analyzed by gastric wash-based quantitative pyrosequencing. 2017 Tumour Biol. pmid:28990461
Radzikowska E et al. Cryptogenic organizing pneumonia-Results of treatment with clarithromycin versus corticosteroids-Observational study. 2017 PLoS ONE pmid:28945804
Chew KL et al. Predominance of clarithromycin-susceptible Mycobacterium massiliense subspecies: Characterization of the Mycobacterium abscessus complex at a tertiary acute care hospital. 2017 J. Med. Microbiol. pmid:28874233
Feng L et al. Removal of antibiotics during the anaerobic digestion of pig manure. 2017 Sci. Total Environ. pmid:28628813
Smith S et al. The Irish Helicobacter pylori Working Group consensus for the diagnosis and treatment of H. pylori infection in adult patients in Ireland. 2017 Eur J Gastroenterol Hepatol pmid:28350745
Mougari F et al. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. 2017 J. Antimicrob. Chemother. pmid:28333340
Anwar HF et al. Synthesis of clarithromycin ketolides chemically modified at the unreactive C10-methyl group. 2017 Bioorg. Med. Chem. pmid:28302508
Turvey SL et al. Mycobacterium branderi infection: Case report and literature review of an unusual and difficult-to-treat non-tuberculous mycobacterium. 2017 Int. J. Infect. Dis. pmid:28268125
Kadota JI et al. The clinical efficacy of a clarithromycin-based regimen for Mycobacterium avium complex disease: A nationwide post-marketing study. 2017 J. Infect. Chemother. pmid:28254517
Quinn KL et al. Macrolides, Digoxin Toxicity and the Risk of Sudden Death: A Population-Based Study. 2017 Drug Saf pmid:28421551
Takeuchi S et al. Hypotension induced by the concomitant use of a calcium-channel blocker and clarithromycin. 2017 BMJ Case Rep pmid:28069789