clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Giardiasis D005873 3 associated lipids
Glossitis, Benign Migratory D005929 1 associated lipids
Granuloma, Plasma Cell D006104 1 associated lipids
Hand Dermatoses D006229 5 associated lipids
Hearing Disorders D006311 10 associated lipids
Hearing Loss, Sensorineural D006319 8 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Hemophilia A D006467 10 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Lai KC et al. Ulcer-healing drugs are required after eradication of Helicobacter pylori in patients with gastric ulcer but not duodenal ulcer haemorrhage. 2000 Aliment. Pharmacol. Ther. pmid:10930902
Pilotto A et al. Pantoprazole versus one-week Helicobacter pylori eradication therapy for the prevention of acute NSAID-related gastroduodenal damage in elderly subjects. 2000 Aliment. Pharmacol. Ther. pmid:10930903
Kihira K et al. Rabeprazole, amoxycillin and low- or high-dose clarithromycin for cure of Helicobacter pylori infection. 2000 Aliment. Pharmacol. Ther. pmid:10930904
Peterson WL The role of antisecretory drugs in the treatment of Helicobacter pylori infection. 1997 Aliment. Pharmacol. Ther. pmid:9146787
Fakheri H et al. Clarithromycin vs. furazolidone in quadruple therapy regimens for the treatment of Helicobacter pylori in a population with a high metronidazole resistance rate. 2001 Aliment. Pharmacol. Ther. pmid:11207517
Nagahara A et al. Five-day proton pump inhibitor-based quadruple therapy regimen is more effective than 7-day triple therapy regimen for Helicobacter pylori infection. 2001 Aliment. Pharmacol. Ther. pmid:11207518
Bardhan KD et al. Triple therapy for Helicobacter pylori eradication: a comparison of pantoprazole once versus twice daily. 2000 Aliment. Pharmacol. Ther. pmid:10632646
Gu Q et al. Effect of cyclo-oxygenase inhibitors on Helicobacter pylori susceptibility to metronidazole and clarithromycin. 2004 Aliment. Pharmacol. Ther. pmid:15352916
Calvet X et al. One-week triple vs. quadruple therapy for Helicobacter pylori infection - a randomized trial. 2002 Aliment. Pharmacol. Ther. pmid:12144575
Spinzi GC et al. Comparison of omeprazole and lansoprazole in short-term triple therapy for Helicobacter pylori infection. 1998 Aliment. Pharmacol. Ther. pmid:9663722
Goodgame RW et al. Randomized controlled trial of clarithromycin and ethambutol in the treatment of Crohn's disease. 2001 Aliment. Pharmacol. Ther. pmid:11736715
Gené E et al. Triple vs. quadruple therapy for treating Helicobacter pylori infection: a meta-analysis. 2003 Aliment. Pharmacol. Ther. pmid:12752350
Toracchio S et al. Role of antimicrobial susceptibility testing on efficacy of triple therapy in Helicobacter pylori eradication. 2000 Aliment. Pharmacol. Ther. pmid:11121913
You JH et al. Economic analysis of four triple regimens for the treatment of Helicobacter pylori-related peptic ulcer disease in in-patient and out-patient settings in Hong Kong. 2001 Aliment. Pharmacol. Ther. pmid:11421876
De Francesco V et al. Effectiveness and pharmaceutical cost of sequential treatment for Helicobacter pylori in patients with non-ulcer dyspepsia. 2004 Aliment. Pharmacol. Ther. pmid:15113366
Pellegrini M et al. Is a long-term ranitidine-based triple therapy against Helicobacter pylori only a heritage of the past? A prospective, randomized clinicopharmacological study. 2005 Aliment. Pharmacol. Ther. pmid:16098001
Liu WZ et al. Furazolidone-containing short-term triple therapies are effective in the treatment of Helicobacter pylori infection. 1999 Aliment. Pharmacol. Ther. pmid:10102964
Huang J and Hunt RH Clarithromycin-based triple therapies. 1999 Aliment. Pharmacol. Ther. pmid:10102978
Osato MS et al. Comparative efficacy of new investigational agents against Helicobacter pylori. 2001 Aliment. Pharmacol. Ther. pmid:11284777
Klok RM et al. Continued utilization and costs of proton pump inhibitors after Helicobacter pylori eradication in chronic users of gastrointestinal drugs. 2002 Aliment. Pharmacol. Ther. pmid:11966514