clarithromycin

clarithromycin is a lipid of Polyketides (PK) class. Clarithromycin is associated with abnormalities such as Helicobacter Pylori Infection, Infection, Coinfection, Gastritis and Peptic Ulcer. The involved functions are known as Point Mutation, Increased Sensitivy, Bacterial resistance, urease activity and Mutation. Clarithromycin often locates in Blood, Gastric mucosa, Biopsy sample, Respiratory System and Entire gastrointestinal tract. The associated genes with clarithromycin are Genes, rRNA, rRNA Operon, Genome, HM13 gene and GDF15 gene. The related lipids are 9,11-linoleic acid, Steroids, Lysophosphatidylcholines, Lipopolysaccharides and 4-hydroxycholesterol. The related experimental models are Mouse Model, Knock-out and Experimental Pneumococcal Meningitis.

Cross Reference

Introduction

To understand associated biological information of clarithromycin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with clarithromycin?

clarithromycin is suspected in Infection, Helicobacter Pylori Infection, Pneumonia, Respiratory Tract Infections, PARKINSON DISEASE, LATE-ONSET, Community acquired pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with clarithromycin

MeSH term MeSH ID Detail
Abnormalities, Drug-Induced D000014 10 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Abscess D000038 13 associated lipids
Achlorhydria D000126 1 associated lipids
Actinomycetales Infections D000193 4 associated lipids
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Per page 10 20 50 100 | Total 242

PubChem Associated disorders and diseases

What pathways are associated with clarithromycin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with clarithromycin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with clarithromycin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with clarithromycin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with clarithromycin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with clarithromycin?

Mouse Model

Mouse Model are used in the study 'Inflammation provoked by Mycoplasma pneumoniae extract: implications for combination treatment with clarithromycin and dexamethasone.' (Hirao S et al., 2011), Mouse Model are used in the study 'Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers.' (Hafner R et al., 1998), Mouse Model are used in the study 'Clarithromycin attenuates mastectomy-induced acute inflammatory response.' (Chow LW et al., 2000) and Mouse Model are used in the study 'In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa.' (Bui KQ et al., 2000).

Knock-out

Knock-out are used in the study 'Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38).' (Nash KA, 2003).

Experimental Pneumococcal Meningitis

Experimental Pneumococcal Meningitis are used in the study 'Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid.' (Maniu CV et al., 2001).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with clarithromycin

Download all related citations
Per page 10 20 50 100 | Total 7636
Authors Title Published Journal PubMed Link
Zycinska K et al. Antibiotic Treatment of Hospitalized Patients with Pneumonia Complicated by Clostridium Difficile Infection. 2016 Adv. Exp. Med. Biol. pmid:27620311
Bax HI et al. Tigecycline Potentiates Clarithromycin Activity against Mycobacterium avium In Vitro. 2016 Antimicrob. Agents Chemother. pmid:26883697
Hirata Y et al. Efficacy of triple therapy with esomeprazole, amoxicillin, and sitafloxacin as a third-line Helicobacter pylori eradication regimen. 2016 Int. J. Infect. Dis. pmid:27590563
Liou JM et al. Concomitant, bismuth quadruple, and 14-day triple therapy in the first-line treatment of Helicobacter pylori: a multicentre, open-label, randomised trial. 2016 Lancet pmid:27769562
Shichijo S et al. Vonoprazan versus conventional proton pump inhibitor-based triple therapy as first-line treatment against Helicobacter pylori: A multicenter retrospective study in clinical practice. 2016 J Dig Dis pmid:27534444
Morimoto K et al. Macrolide-Resistant Mycobacterium avium Complex Lung Disease: Analysis of 102 Consecutive Cases. 2016 Ann Am Thorac Soc pmid:27513168
Lotfipour F et al. Study of Antimicrobial Effects of Clarithromycin Loaded PLGA Nanoparticles against Clinical Strains of Helicobacter pylori. 2016 Drug Res (Stuttg) pmid:25919643
Okano Y et al. Miliary pulmonary nodules due to Mycobacterium xenopi in a steroid-induced immunocompromised patient successfully treated with chemotherapy: a case report. 2016 BMC Pulm Med pmid:27287608
Akram FE et al. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). 2016 Ann. Clin. Microbiol. Antimicrob. pmid:27530257
Root AA et al. Evaluation of the risk of cardiovascular events with clarithromycin using both propensity score and self-controlled study designs. 2016 Br J Clin Pharmacol pmid:27090996
Kazama I et al. Clarithromycin Dose-Dependently Stabilizes Rat Peritoneal Mast Cells. 2016 Chemotherapy pmid:27088971
Huynh VA et al. [Fixed drug eruption to clarithromycin: The importance of challenge tests in diagnosis]. 2016 Ann Dermatol Venereol pmid:27080820
EmiralioÄŸlu N et al. Pulmonary Mycobacterium abscessus Infection in a Patient with Triple A Syndrome. 2016 J. Trop. Pediatr. pmid:27080471
Friedman ND et al. Increasing Experience with Primary Oral Medical Therapy for Mycobacterium ulcerans Disease in an Australian Cohort. 2016 Antimicrob. Agents Chemother. pmid:26883709
Chua CS et al. The efficacy of blueberry and grape seed extract combination on triple therapy for Helicobacter pylori eradication: a randomised controlled trial. 2016 Int J Food Sci Nutr pmid:26883189
Meng X et al. [Antibiotic resistance of Helicobacter pylori clinical isolates in Hebei Province]. 2016 Zhonghua Yi Xue Za Zhi pmid:26879786
Çağan-Appak Y et al. Clarithromycin resistance and 23S rRNA gene point mutations of Helicobacter pylori infection in children. 2016 Turk. J. Pediatr. pmid:28276208
Thung I et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. 2016 Aliment. Pharmacol. Ther. pmid:26694080
Lee J et al. A new anti-microbial combination prolongs the latency period, reduces acute histologic chorioamnionitis as well as funisitis, and improves neonatal outcomes in preterm PROM. 2016 J. Matern. Fetal. Neonatal. Med. pmid:26373262
Tsujimae M et al. A Comparative Study of a New Class of Gastric Acid Suppressant Agent Named Vonoparazan versus Esomeprazole for the Eradication of Helicobacter pylori. 2016 Digestion pmid:28030862