Avermectin A1a

Avermectin A1a is a lipid of Polyketides (PK) class. Avermectin a1a is associated with abnormalities such as Ataxia with vitamin E deficiency, Strongyloidiasis, Congenital Transposition, Gigantism and Onchocerciasis. The involved functions are known as DNA Binding, Anabolism, Insertion Mutation, Process and physiological aspects. Avermectin a1a often locates in Chromosomes, Membrane, Clone, soluble and Tissue membrane. The associated genes with Avermectin A1a are Polypeptides, oxytocin, 1-desamino-(O-Et-Tyr)(2)-, Gene Feature, Genome and Gene Clusters. The related lipids are Propionate. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Avermectin A1a, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Avermectin A1a?

Avermectin A1a is suspected in Ataxia with vitamin E deficiency, Gigantism, Strongyloidiasis, Congenital Transposition, Onchocerciasis, Tropical Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Avermectin A1a

MeSH term MeSH ID Detail
Inflammation D007249 119 associated lipids
Body Weight D001835 333 associated lipids
Dog Diseases D004283 5 associated lipids
Leukemia P388 D007941 43 associated lipids
Neuroblastoma D009447 66 associated lipids
Trichostrongyloidiasis D014252 7 associated lipids
Poisoning D011041 9 associated lipids
Cleft Palate D002972 9 associated lipids
Fish Diseases D005393 5 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Per page 10 20 | Total 19

PubChem Associated disorders and diseases

What pathways are associated with Avermectin A1a

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Avermectin A1a?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Avermectin A1a?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Avermectin A1a?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Avermectin A1a?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Avermectin A1a?

Mouse Model

Mouse Model are used in the study 'Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid(A) receptor.' (Dawson GR et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Avermectin A1a

Download all related citations
Per page 10 20 50 100 | Total 477
Authors Title Published Journal PubMed Link
Xu Z et al. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite. 2017 Toxicol. Sci. pmid:27742867
Mermans C et al. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. 2017 Pest Manag. Sci. pmid:28736919
Sun D et al. SAV742, a Novel AraC-Family Regulator from Streptomyces avermitilis, Controls Avermectin Biosynthesis, Cell Growth and Development. 2016 Sci Rep pmid:27841302
Dos Anjos MR et al. Multiresidue method for simultaneous analysis of aflatoxin M1, avermectins, organophosphate pesticides and milbemycin in milk by ultra-performance liquid chromatography coupled to tandem mass spectrometry. 2016 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:27144891
Chen J et al. Different fates of avermectin and artemisinin in China. 2016 Sci China Life Sci pmid:27132020
Del Giudice P [Nobel prize for ivermectin]. 2016 Ann Dermatol Venereol pmid:27016202
Lewin H and Roberts M Introduction. 2016 Annu Rev Anim Biosci pmid:26884105
Baltz RH et al. Introduction to the Special Issue: "Natural Product Discovery and Development in the Genomic Era". 2016 J. Ind. Microbiol. Biotechnol. pmid:26660315
Li D et al. Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin. 2016 Carbohydr Polym pmid:26572364
Wenjie W et al. Nystagmus following acute avermectins poisoning. 2016 Toxicol Ind Health pmid:24280654