chlortetracycline

chlortetracycline is a lipid of Polyketides (PK) class. Chlortetracycline is associated with abnormalities such as Granulomatous Disease, Chronic, Infection, Ischemia, Cerebral Ischemia and Cerebral Infarction. The involved functions are known as Regulation, Binding (Molecular Function), Agent, Stimulus and Process. Chlortetracycline often locates in Protoplasm, Plasma membrane, Membrane, Cytoplasm and specific granule. The associated genes with chlortetracycline are FPR1 gene, P4HTM gene, Homologous Gene, HIST1H1C gene and Microbiome. The related lipids are Lysophosphatidylcholines, Sterols, dilauroyl lecithin, seminolipid and Total cholesterol. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of chlortetracycline, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with chlortetracycline?

chlortetracycline is suspected in Ischemia, Cerebral Ischemia, Cerebral Infarction, Granulomatous Disease, Chronic, Infection, Antibiotic resistant infection and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with chlortetracycline

MeSH term MeSH ID Detail
Uremia D014511 33 associated lipids
Diarrhea D003967 32 associated lipids
Otitis Media D010033 12 associated lipids
Adenocarcinoma D000230 166 associated lipids
Bacterial Infections D001424 21 associated lipids
Hyperglycemia D006943 21 associated lipids
Inflammation D007249 119 associated lipids
Body Weight D001835 333 associated lipids
Osteomyelitis D010019 10 associated lipids
Corneal Diseases D003316 13 associated lipids
Eyelid Diseases D005141 4 associated lipids
Weight Gain D015430 101 associated lipids
Staphylococcal Infections D013203 15 associated lipids
Myocardial Infarction D009203 21 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Clostridium Infections D003015 5 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Cross Infection D003428 9 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Pneumonia D011014 10 associated lipids
Per page 10 20 50 | Total 49

PubChem Associated disorders and diseases

What pathways are associated with chlortetracycline

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with chlortetracycline?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with chlortetracycline?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with chlortetracycline?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with chlortetracycline?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with chlortetracycline?

Mouse Model

Mouse Model are used in the study 'Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia.' (Jiang SX et al., 2005).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with chlortetracycline

Download all related citations
Per page 10 20 50 100 | Total 4669
Authors Title Published Journal PubMed Link
You N et al. Development and evaluation of diffusive gradients in thin films based on nano-sized zinc oxide particles for the in situ sampling of tetracyclines in pig breeding wastewater. 2019 Sci. Total Environ. pmid:30312908
Cazer CL et al. Expanding behavior pattern sensitivity analysis with model selection and survival analysis. 2018 BMC Vet. Res. pmid:30453986
Pulicharla R et al. Acute Impact of Chlortetracycline on Nitrifying and Denitrifying Processes. 2018 Water Environ. Res. pmid:30188278
Xu S et al. A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica-graphitic carbon nitride composite. 2018 Anal Bioanal Chem pmid:30116838
Yao H et al. Inhibitive effects of chlortetracycline on performance of the nitritation-anaerobic ammonium oxidation (anammox) process and strategies for recovery. 2018 J Environ Sci (China) pmid:30037408
Anderson SC et al. Qualitative and quantitative drug residue analyses: Chlortetracycline in white-tailed deer (Odocoileus virginianus) and supermarket meat by liquid chromatography tandem-mass spectrometry. 2018 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:29913335
Pulicharla R et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. 2018 Chemosphere pmid:29843031
Cornejo J et al. Determination of Chlortetracycline Residues, Antimicrobial Activity and Presence of Resistance Genes in Droppings of Experimentally Treated Broiler Chickens. 2018 Molecules pmid:29799472
Satorre MM et al. Relation between respiratory activity and sperm parameters in boar spermatozoa cryopreserved with alpha-tocopherol and selected by Sephadex. 2018 Reprod. Domest. Anim. pmid:29691903
Yi H et al. Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs. 2018 J. Anim. Sci. pmid:29659876