chlortetracycline

chlortetracycline is a lipid of Polyketides (PK) class. Chlortetracycline is associated with abnormalities such as Granulomatous Disease, Chronic, Infection, Ischemia, Cerebral Ischemia and Cerebral Infarction. The involved functions are known as Regulation, Binding (Molecular Function), Agent, Stimulus and Process. Chlortetracycline often locates in Protoplasm, Plasma membrane, Membrane, Cytoplasm and specific granule. The associated genes with chlortetracycline are FPR1 gene, P4HTM gene, Homologous Gene, HIST1H1C gene and Microbiome. The related lipids are Lysophosphatidylcholines, Sterols, dilauroyl lecithin, seminolipid and Total cholesterol. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of chlortetracycline, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with chlortetracycline?

chlortetracycline is suspected in Ischemia, Cerebral Ischemia, Cerebral Infarction, Granulomatous Disease, Chronic, Infection, Antibiotic resistant infection and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with chlortetracycline

MeSH term MeSH ID Detail
Anaplasmosis D000712 3 associated lipids
Digital Dermatitis D058066 3 associated lipids
Impetigo D007169 3 associated lipids
Epidermolysis Bullosa D004820 3 associated lipids
Dry Socket D004368 3 associated lipids
Treponemal Infections D014211 3 associated lipids
Pneumonia of Swine, Mycoplasmal D045729 2 associated lipids
Salmonella Food Poisoning D012478 2 associated lipids
Dermatitis Herpetiformis D003874 1 associated lipids
Per page 10 20 50 | Total 49

PubChem Associated disorders and diseases

What pathways are associated with chlortetracycline

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with chlortetracycline?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with chlortetracycline?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with chlortetracycline?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with chlortetracycline?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with chlortetracycline?

Mouse Model

Mouse Model are used in the study 'Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia.' (Jiang SX et al., 2005).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with chlortetracycline

Download all related citations
Per page 10 20 50 100 | Total 4669
Authors Title Published Journal PubMed Link
Wang YX et al. [Synthesis of core/shell structured magnetic carbon nanoparticles and its adsorption ability to chlortetracycline in aquatic environment]. 2012 Huan Jing Ke Xue pmid:22720571
Li Z et al. Determination on the binding of chlortetracycline to bovine serum albumin using spectroscopic methods. 2012 J. Biochem. Mol. Toxicol. pmid:22730061
Kadirvel G et al. Effect of cryopreservation on apoptotic-like events and its relationship with cryocapacitation of buffalo (Bubalus bubalis) sperm. 2012 Reprod. Domest. Anim. pmid:21676035
Del Pozo Sacristán R et al. Efficacy of in-feed medication with chlortetracycline in a farrow-to-finish herd against a clinical outbreak of respiratory disease in fattening pigs. 2012 Dec 22-29 Vet. Rec. pmid:23136309
Guo L et al. Development and validation of a liquid chromatographic/ tandem mass spectrometric method for determination of chlortetracycline, oxytetracycline, tetracycline, and doxycycline in animal feeds. 2012 Jul-Aug J AOAC Int pmid:22970565
Shepelevich VV et al. [Sensitivity of Pseudomonas chlororaphis to antibiotics and chemical tools of plant protection]. 2012 Nov-Dec Mikrobiol. Z. pmid:23293823
Daghrir R et al. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. 2013 Water Res. pmid:24075724
Yang XQ et al. Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. 2013 J Chromatogr A pmid:23870544
Murillo Pulgarín JA et al. Simultaneous determination of doxycycline and chlortetracycline in real samples by europium-sensitized luminescence. 2013 Appl Spectrosc pmid:23601536
Kanwar N et al. Effects of ceftiofur and chlortetracycline treatment strategies on antimicrobial susceptibility and on tet(A), tet(B), and bla CMY-2 resistance genes among E. coli isolated from the feces of feedlot cattle. 2013 PLoS ONE pmid:24260423