chlortetracycline

chlortetracycline is a lipid of Polyketides (PK) class. Chlortetracycline is associated with abnormalities such as Granulomatous Disease, Chronic, Infection, Ischemia, Cerebral Ischemia and Cerebral Infarction. The involved functions are known as Regulation, Binding (Molecular Function), Agent, Stimulus and Process. Chlortetracycline often locates in Protoplasm, Plasma membrane, Membrane, Cytoplasm and specific granule. The associated genes with chlortetracycline are FPR1 gene, P4HTM gene, Homologous Gene, HIST1H1C gene and Microbiome. The related lipids are Lysophosphatidylcholines, Sterols, dilauroyl lecithin, seminolipid and Total cholesterol. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of chlortetracycline, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with chlortetracycline?

chlortetracycline is suspected in Ischemia, Cerebral Ischemia, Cerebral Infarction, Granulomatous Disease, Chronic, Infection, Antibiotic resistant infection and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with chlortetracycline

MeSH term MeSH ID Detail
Dermatitis Herpetiformis D003874 1 associated lipids
Pneumonia of Swine, Mycoplasmal D045729 2 associated lipids
Salmonella Food Poisoning D012478 2 associated lipids
Dry Socket D004368 3 associated lipids
Epidermolysis Bullosa D004820 3 associated lipids
Testicular Hydrocele D006848 3 associated lipids
Treponemal Infections D014211 3 associated lipids
Digital Dermatitis D058066 3 associated lipids
Subacute Sclerosing Panencephalitis D013344 3 associated lipids
Anaplasmosis D000712 3 associated lipids
Per page 10 20 50 | Total 49

PubChem Associated disorders and diseases

What pathways are associated with chlortetracycline

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with chlortetracycline?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with chlortetracycline?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with chlortetracycline?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with chlortetracycline?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with chlortetracycline?

Mouse Model

Mouse Model are used in the study 'Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia.' (Jiang SX et al., 2005).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with chlortetracycline

Download all related citations
Per page 10 20 50 100 | Total 4669
Authors Title Published Journal PubMed Link
Bowman SM et al. Toxicity and reductions in intracellular calcium levels following uptake of a tetracycline antibiotic in Arabidopsis. 2011 Environ. Sci. Technol. pmid:21882870
Dong XF et al. Effects of dietary polysavone (Alfalfa extract) and chlortetracycline supplementation on antioxidation and meat quality in broiler chickens. 2011 Br. Poult. Sci. pmid:21732875
Chander Y et al. Identification of the tet(B) resistance gene in Streptococcus suis. 2011 Vet. J. pmid:20696603
Xie X et al. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). 2010 Environ. Toxicol. Chem. pmid:20821522
Spisso BF et al. Pilot survey of commercial pasteurized milk consumed in the metropolitan area of Rio de Janeiro, Brazil, for tetracyclines residues, including the 4-epimers of oxytetracycline, tetracycline and chlortetracycline. 2010 Food Addit Contam Part B Surveill pmid:24779621
Stone JJ et al. Tylosin and chlortetracycline effects during swine manure digestion: influence of sodium azide. 2010 Bioresour. Technol. pmid:20728345
Guillot M et al. Dietary chlortetracycline induces differential effects on the accuracy of quantitative computed tomography and dual energy X-ray absorptiometry in assessing vertebral bone mineral density in growing pigs. 2010 Vet. J. pmid:19501002
Reinbold JB et al. The efficacy of three chlortetracycline regimens in the treatment of persistent Anaplasma marginale infection. 2010 Vet. Microbiol. pmid:20346598
Chen WR and Huang CH Adsorption and transformation of tetracycline antibiotics with aluminum oxide. 2010 Chemosphere pmid:20378149
Cornick NA Tylosin and chlorotetracycline decrease the duration of fecal shedding of E. coli O157:H7 by swine. 2010 Vet. Microbiol. pmid:20018464