oxytetracycline

oxytetracycline is a lipid of Polyketides (PK) class. Oxytetracycline is associated with abnormalities such as Infection, X-linked centronuclear myopathy, Bacterial Infections, Heart failure and Onchocerciasis. The involved functions are known as Anabolism, physiological aspects, Transcription, Genetic, Fermentation and Transcriptional Activation. Oxytetracycline often locates in Chromosomes, Flank (surface region), Entire bony skeleton, Bone Marrow and Body tissue. The associated genes with oxytetracycline are Polypeptides, Homologous Gene, Gene Clusters, Locus and CYCS gene. The related lipids are LH 1 and Lipid Peroxides. The related experimental models are Disease model.

Cross Reference

Introduction

To understand associated biological information of oxytetracycline, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with oxytetracycline?

oxytetracycline is suspected in Infection, Helminthiasis, Nodule, Bacterial Infections, Yeast infection, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with oxytetracycline

MeSH term MeSH ID Detail
Tick Toxicoses D013986 1 associated lipids
Vascular Malformations D054079 1 associated lipids
Osteoradionecrosis D010025 1 associated lipids
Vaginal Discharge D019522 2 associated lipids
Primate Diseases D018419 2 associated lipids
Pneumonia of Calves, Enzootic D048089 2 associated lipids
Seroma D049291 2 associated lipids
Rectal Fistula D012003 2 associated lipids
Ulna Fractures D014458 2 associated lipids
Encephalitozoonosis D016890 2 associated lipids
Per page 10 20 50 100 | Total 137

PubChem Associated disorders and diseases

What pathways are associated with oxytetracycline

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with oxytetracycline?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with oxytetracycline?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with oxytetracycline?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with oxytetracycline?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with oxytetracycline?

Disease model

Disease model are used in the study 'A molecular ecological approach to the detection and designation of the etiological agents of a model polymicrobial disease.' (Antiabong JF et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with oxytetracycline

Download all related citations
Per page 10 20 50 100 | Total 5138
Authors Title Published Journal PubMed Link
Khadem A et al. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. 2014 Br. J. Nutr. pmid:25181450
Akyol C et al. Acidification of non-medicated and oxytetracycline-medicated cattle manures during anaerobic digestion. 2014 Sep-Oct Environ Technol pmid:25145191
Gberindyer AF et al. Pharmacokinetics of Short- and Long-acting Formulations of Oxytetracycline After Intramuscular Administration in Chickens. 2015 J. Avian Med. Surg. pmid:26771319
Gao M et al. Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). 2015 Chemosphere pmid:26134676
Menanteau-Ledouble S et al. Effect of a phytogenic feed additive on the susceptibility of Onchorhynchus mykiss to Aeromonas salmonicida. 2015 Dis. Aquat. Org. pmid:26119300
Bah GS et al. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi. 2015 Vet. Parasitol. pmid:26100152
Ncibi MC and Sillanpää M Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. 2015 J. Hazard. Mater. pmid:26024613
Fernández ML et al. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure. 2015 J. Appl. Microbiol. pmid:25973855
Attaie R et al. Short communication: Determination of withdrawal time for oxytetracycline in different types of goats for milk consumption. 2015 J. Dairy Sci. pmid:25958275
Miranda CD et al. Scallop larvae hatcheries as source of bacteria carrying genes encoding for non-enzymatic phenicol resistance. 2015 Mar. Pollut. Bull. pmid:25956439
Zhou B et al. Adsorption and oxidation of SOâ‚‚in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper. 2015 J Air Waste Manag Assoc pmid:25947052
Shentu JL et al. Effect from low-level exposure of oxytetracycline on abundance of tetracycline resistance genes in arable soils. 2015 Environ Sci Pollut Res Int pmid:25925140
Botelho RG et al. Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. 2015 Chemosphere pmid:25898970
Abolhasani J and Farajzadeh N A new spectrofluorimetric method for the determination of some tetracyclines based on their interfering effect on resonance fluorescence energy transfer. 2015 Luminescence pmid:25059920
Fernández-Calviño D et al. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments. 2015 Chemosphere pmid:25973861
Odore R et al. Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. 2015 Poult. Sci. pmid:26015592
Yin S et al. Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. 2015 Microb. Cell Fact. pmid:25886456
Matayoshi M et al. Resistance phenotypes and genotypes among multiple-antimicrobial-resistant Salmonella enterica subspecies enterica serovar Choleraesuis strains isolated between 2008 and 2012 from slaughter pigs in Okinawa Prefecture, Japan. 2015 J. Vet. Med. Sci. pmid:25715779
Ricer L Malignant catarrhal fever in a Red Angus cow. 2015 Can. Vet. J. pmid:25565720
Fernández-Calviño D et al. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils. 2015 Environ Sci Pollut Res Int pmid:25081007