CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Glioma D005910 112 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Betz AL et al. Hexose transport and phosphorylation by capillaries isolated from rat brain. 1979 Am. J. Physiol. pmid:434144
She ZW et al. Tumor necrosis factor primes neutrophils for hypochlorous acid production. 1989 Am. J. Physiol. pmid:2558582
Mullin JM et al. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport. 1989 Am. J. Physiol. pmid:2603953
Feuilloley M et al. Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices. 1994 Am. J. Physiol. pmid:8141278
Foley JE et al. Glucose transport in isolated rat adipocytes with measurements of L-arabinose uptake. 1978 Am. J. Physiol. pmid:623288
Bleakman D and Naftalin RJ Hypertonic fluid absorption from rabbit descending colon in vitro. 1990 Am. J. Physiol. pmid:2107755
Rosholt MN et al. High-fat diet reduces glucose transporter responses to both insulin and exercise. 1994 Am. J. Physiol. pmid:8304561
Ohnishi S et al. Delayed shortening and shrinkage of cochlear outer hair cells. 1992 Am. J. Physiol. pmid:1443102
Muller J and Kachadorian WA Aggregate-carrying membranes during ADH stimulation and washout in toad bladder. 1984 Am. J. Physiol. pmid:6430101
Craik JD et al. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. 1998 Am. J. Physiol. pmid:9458906
Kasbekar DK and Gordon GS Effects of colchicine and vinblastine on in vitro gastric secretion. 1979 Am. J. Physiol. pmid:312607
Barnard RJ et al. Effects of maturation and aging on the skeletal muscle glucose transport system. 1992 Am. J. Physiol. pmid:1590372
Valant P and Erlij D K+-stimulated sugar uptake in skeletal muscle: role of cytoplasmic Ca2+. 1983 Am. J. Physiol. pmid:6346894
Malaisse WJ et al. Insulinotropic action of alpha-D-glucose pentaacetate: functional aspects. 1997 Am. J. Physiol. pmid:9435523
Uemura N et al. Decreased secretion due to a Ca2+ influx defect in frog peptic cells isolated with EGTA. 1990 Am. J. Physiol. pmid:2159219
Grinstein S et al. Phorbol ester-induced changes of cytoplasmic pH in neutrophils: role of exocytosis in Na+-H+ exchange. 1985 Am. J. Physiol. pmid:2579574
Stetson DL and Steinmetz PR Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. 1983 Am. J. Physiol. pmid:6408926
Ismail-Beigi F et al. Stimulation of glucose transport in Clone 9 cells by exposure to alkaline pH. 1990 Am. J. Physiol. pmid:2305872
Wang WH et al. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct. 1994 Am. J. Physiol. pmid:7943357
Tseng S et al. F-actin disruption attenuates agonist-induced [Ca2+], myosin phosphorylation, and force in smooth muscle. 1997 Am. J. Physiol. pmid:9227425
Ajubi NE et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. 1999 Am. J. Physiol. pmid:9886964
Goldblum SE et al. TNF-alpha induces endothelial cell F-actin depolymerization, new actin synthesis, and barrier dysfunction. 1993 Am. J. Physiol. pmid:8476021
Franceschi RT et al. Requirement for Na(+)-dependent ascorbic acid transport in osteoblast function. 1995 Am. J. Physiol. pmid:7611363
Longo N et al. Influx and efflux of 3-O-methyl-D-glucose by cultured human fibroblasts. 1988 Am. J. Physiol. pmid:3364550
Wade JB and Kachadorian WA Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. 1988 Am. J. Physiol. pmid:3140672
Kimmich GA and Randles J Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B. 1979 Am. J. Physiol. pmid:464042
Ladrière L et al. Assessment of islet beta-cell mass in isolated rat pancreases perfused with D-[(3)H]mannoheptulose. 2001 Am. J. Physiol. Endocrinol. Metab. pmid:11440906
Hosokawa M and Thorens B Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11882499
Moulin F et al. Hepatic and extrahepatic factors critical for liver injury during lipopolysaccharide exposure. 2001 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:11705747
Ma TY et al. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. 2000 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:11052983
Li Q et al. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. 2004 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:15033637
Ramasamy R et al. Protection of ischemic hearts by high glucose is mediated, in part, by GLUT-4. 2001 Am. J. Physiol. Heart Circ. Physiol. pmid:11406496
Boer C et al. Smooth muscle F-actin disassembly and RhoA/Rho-kinase signaling during endotoxin-induced alterations in pulmonary arterial compliance. 2004 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:14514519
Cammisotto PG and Bukowiecki LJ Role of calcium in the secretion of leptin from white adipocytes. 2004 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:15331383
Polakof S et al. In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. 2007 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:17567722
Ebner HL et al. Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes. 2005 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:15905223
Tseng YC et al. Functional analysis of the glucose transporters-1a, [corrected] -6, and -13.1 expressed by zebrafish epithelial cells. 2011 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:21123760
Casartelli M et al. A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). 2008 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:18635456
Miyata Y et al. P-gp-induced modulation of regulatory volume increase occurs via PKC in mouse proximal tubule. 2002 Am. J. Physiol. Renal Physiol. pmid:11739114
Takami M et al. Mac-1-dependent tyrosine phosphorylation during neutrophil adhesion. 2001 Am. J. Physiol., Cell Physiol. pmid:11287316
Sage JM et al. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. 2015 Am. J. Physiol., Cell Physiol. pmid:25715702
Leitch JM and Carruthers A alpha- and beta-monosaccharide transport in human erythrocytes. 2009 Am. J. Physiol., Cell Physiol. pmid:18987250
Mitchell T et al. Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. 2008 Am. J. Physiol., Cell Physiol. pmid:18799653
Pérez A et al. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. 2009 Am. J. Physiol., Cell Physiol. pmid:19386788
Ojeda P et al. Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site. 2012 Am. J. Physiol., Cell Physiol. pmid:22673619
Yu XY et al. Physiologic modulation of bronchial epithelial cell barrier function by polycationic exposure. 1994 Am. J. Respir. Cell Mol. Biol. pmid:8049079
Neeley SP et al. Augmentation of stimulated eosinophil degranulation by VLA-4 (CD49d)-mediated adhesion to fibronectin. 1994 Am. J. Respir. Cell Mol. Biol. pmid:8049081
Baldys A and Aust AE Role of iron in inactivation of epidermal growth factor receptor after asbestos treatment of human lung and pleural target cells. 2005 Am. J. Respir. Cell Mol. Biol. pmid:15626777
Stolk J et al. Potency of antileukoprotease and alpha 1-antitrypsin to inhibit degradation of fibrinogen by adherent polymorphonuclear leukocytes from normal subjects and patients with chronic granulomatous disease. 1992 Am. J. Respir. Cell Mol. Biol. pmid:1316132
Du L et al. Actin filament reorganization is a key step in lung inflammation induced by systemic inflammatory response syndrome. 2012 Am. J. Respir. Cell Mol. Biol. pmid:22721831