CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Uremia D014511 33 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Xu BZ et al. Involvement of calcium/calmodulin-dependent protein kinase kinase in meiotic maturation of pig oocytes. 2009 Anim. Reprod. Sci. pmid:18367350
Leitch JM and Carruthers A alpha- and beta-monosaccharide transport in human erythrocytes. 2009 Am. J. Physiol., Cell Physiol. pmid:18987250
Wang L et al. Changes in the reciprocal position of the first polar body and oocyte chromosome set in golden hamsters. 2009 Biosci. Rep. pmid:18980577
Scarfì S et al. Ascorbic acid pre-treated quartz stimulates TNF-alpha release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation. 2009 Respir. Res. pmid:19298665
Vu DM et al. CD133+ endothelial progenitor cells as a potential cell source for a bioartificial glomerulus. 2009 Tissue Eng Part A pmid:19358628
Izumi Y and Zorumski CF Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. 2009 Neuroscience pmid:19362122
Apostolakos P et al. Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. 2009 Cell Motil. Cytoskeleton pmid:19363785
Bukoreshtliev NV et al. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. 2009 FEBS Lett. pmid:19345217
Marra CA and de Alaniz MJ Microtubule depolymerization modifies the incorporation of fatty acids into glycerolipids. 2009 Med. Sci. Monit. pmid:19478693
Manjunatha BM et al. Post-thaw development of in vitro produced buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. 2009 J. Vet. Sci. pmid:19461211
Root-Bernstein R and Vonck J Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. 2009 Cell. Mol. Life Sci. pmid:19554259
Huang YC et al. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica. 2009 J. Nat. Prod. pmid:19583252
Rodríguez-Enríquez S et al. Kinetics of transport and phosphorylation of glucose in cancer cells. 2009 J. Cell. Physiol. pmid:19681047
Egli D et al. Reprogramming after chromosome transfer into mouse blastomeres. 2009 Curr. Biol. pmid:19682906
Chang LY et al. Inhibitory effects of safrole on phagocytosis, intracellular reactive oxygen species, and the activity of myeloperoxidase released by human polymorphonuclear leukocytes. 2009 J. Periodontol. pmid:19656034
Gusakova SV et al. [Research of cytoskeleton-dependent mechanisms of contractile activity regulation in the smooth muscles]. 2009 Ross Fiziol Zh Im I M Sechenova pmid:19639882
Nakano T et al. Localization of diacylglycerol kinase epsilon on stress fibers in vascular smooth muscle cells. 2009 Cell Tissue Res. pmid:19421779
Arsoy NS et al. Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage. 2009 Mutagenesis pmid:19423564
Pérez A et al. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. 2009 Am. J. Physiol., Cell Physiol. pmid:19386788
Barros LF et al. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. 2009 J. Neurochem. pmid:19393014