CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Uremia D014511 33 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Betz AL et al. Hexose transport and phosphorylation by capillaries isolated from rat brain. 1979 Am. J. Physiol. pmid:434144
She ZW et al. Tumor necrosis factor primes neutrophils for hypochlorous acid production. 1989 Am. J. Physiol. pmid:2558582
Feuilloley M et al. Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices. 1994 Am. J. Physiol. pmid:8141278
Johnson LW and Smith CH Monosaccharide transport across microvillous membrane of human placenta. 1980 Am. J. Physiol. pmid:6990781
Pearl M and Taylor A Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. 1983 Am. J. Physiol. pmid:6307056
Reshkin SJ and Ahearn GA Basolateral glucose transport by intestine of teleost, Oreochromis mossambicus. 1987 Am. J. Physiol. pmid:3030144
Mercado CL et al. Enhanced glucose transport in response to inhibition of respiration in Clone 9 cells. 1989 Am. J. Physiol. pmid:2750888
Schneyer LH Differential effects of cytochalasin B on Na and K transport in a perfused salivary duct. 1974 Am. J. Physiol. pmid:4412815
Lipowsky HH et al. Leukocyte rolling velocity and its relation to leukocyte-endothelium adhesion and cell deformability. 1996 Am. J. Physiol. pmid:8967378
Peralta Soler A et al. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. 1996 Am. J. Physiol. pmid:8928850
Grinstein S et al. Phorbol ester-induced changes of cytoplasmic pH in neutrophils: role of exocytosis in Na+-H+ exchange. 1985 Am. J. Physiol. pmid:2579574
Ismail-Beigi F et al. Stimulation of glucose transport in Clone 9 cells by exposure to alkaline pH. 1990 Am. J. Physiol. pmid:2305872
Stahl GL et al. Eicosanoid production from porcine neutrophils and platelets: differential production with various agonists. 1997 Am. J. Physiol. pmid:9227410
Salans LB et al. Effects of dietary composition on glucose metabolism in rat adipose cells. 1981 Am. J. Physiol. pmid:7008628
Ajubi NE et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. 1999 Am. J. Physiol. pmid:9886964
Longo N et al. Influx and efflux of 3-O-methyl-D-glucose by cultured human fibroblasts. 1988 Am. J. Physiol. pmid:3364550
Cheung PT and Hammerman MR Na+-independent D-glucose transport in rabbit renal basolateral membranes. 1988 Am. J. Physiol. pmid:3364579
Wan X et al. Activation of mechanosensitive currents in traumatized membrane. 1999 Am. J. Physiol. pmid:9950759
Wade JB and Kachadorian WA Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. 1988 Am. J. Physiol. pmid:3140672
Matsumura N et al. Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). 1999 Am. J. Pathol. pmid:10362789