CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Uremia D014511 33 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Czech MP New perspectives on the mechanism of insulin action. 1984 Recent Prog. Horm. Res. pmid:6207566
Hashimoto K et al. Comparison of four different treatment conditions of extended exposure in the in vitro micronucleus assay using TK6 lymphoblastoid cells. 2011 Regul. Toxicol. Pharmacol. pmid:20800082
Bang JI et al. The effects of artificial activation timing on the development of SCNT-derived embryos and newborn piglets. 2013 Reprod Biol pmid:23719117
Chourrout D [Gynogenesis in vertebrates]. 1982 Reprod Nutr Dev pmid:6760302
Wang C et al. Analysis of cat oocyte activation methods for the generation of feline disease models by nuclear transfer. 2009 Reprod. Biol. Endocrinol. pmid:20003339
Chen CH et al. Transgenic cloned mice expressing enhanced green fluorescent protein generated by activation stimuli combined with 6-dimethylaminopurine. 2008 Reprod. Domest. Anim. pmid:18312486
Kim BS et al. Effects of gonadotropins on in vitro maturation and of electrical stimulation on parthenogenesis of canine oocytes. 2010 Reprod. Domest. Anim. pmid:19144021
Uma Mahesh Y et al. Cell cycle synchronization of bison (Bos gaurus) fibroblasts derived from ear piece collected post-mortem. 2012 Reprod. Domest. Anim. pmid:22168265
Jiménez-Trigos E et al. Post-warming competence of in vivo matured rabbit oocytes treated with cytoskeletal stabilization (Taxol) and cytoskeletal relaxant (Cytochalasin B) before vitrification. 2013 Reprod. Domest. Anim. pmid:22448807
Yamada C et al. Vitrification with glutamine improves maturation rate of vitrified / warmed immature bovine oocytes. 2011 Reprod. Domest. Anim. pmid:20345596
Boediono A et al. Development in vitro and in vivo of aggregated parthenogenetic bovine embryos. 1995 Reprod. Fertil. Dev. pmid:8848573
Cuello C et al. Superfine open pulled straws vitrification of porcine blastocysts does not require pretreatment with cytochalasin B and/or centrifugation. 2010 Reprod. Fertil. Dev. pmid:20450833
Cha SK et al. Effect of cytochalasin B and cycloheximide on the activation rate, chromosome constituent and in vitro development of porcine oocytes following parthenogenetic stimulation. 1997 Reprod. Fertil. Dev. pmid:9402254
Tecirlioglu RT et al. Comparison of two approaches to nuclear transfer in the bovine: hand-made cloning with modifications and the conventional nuclear transfer technique. 2005 Reprod. Fertil. Dev. pmid:15907283
Cheong HT et al. Development of reconstituted pig embryos by nuclear transfer of cultured cumulus cells. 2000 Reprod. Fertil. Dev. pmid:11194552
Du F et al. Beneficial effect of oocyte activation prior to and during nuclear transfer in cattle using in vitro matured oocytes 24 h of age. 1995 Reprod. Nutr. Dev. pmid:8534364
Sutovský P et al. Microfilaments, microtubules and intermediate filaments fulfil differential roles during gonadotropin-induced expansion of bovine cumulus oophorus. 1994 Reprod. Nutr. Dev. pmid:7802934
Prather RS Basic mechanisms of fertilization and parthenogenesis in pigs. 2001 Reprod. Suppl. pmid:11980183
Trková M et al. Increased micronuclei frequencies in couples with reproductive failure. 2000 Jul-Aug Reprod. Toxicol. pmid:10908836
Somfai T et al. Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes. 2006 Reproduction pmid:17008467