CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Uremia D014511 33 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Sternlicht E et al. Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. 1989 Am. J. Physiol. pmid:2645782
Ciaraldi TP et al. Insulin-stimulated glucose transport in human adipocytes. 1979 Am. J. Physiol. pmid:443417
Renfro JL Calcium transport across peritubular surface of the marine teleost renal tubule. 1978 Am. J. Physiol. pmid:665777
Garland A et al. Activated eosinophils elicit substance P release from cultured dorsal root ganglion neurons. 1997 Am. J. Physiol. pmid:9374740
She ZW et al. Tumor necrosis factor primes neutrophils for hypochlorous acid production. 1989 Am. J. Physiol. pmid:2558582
Singhal PC et al. Endocytosis by cultured mesangial cells and associated changes in prostaglandin E2 synthesis. 1987 Am. J. Physiol. pmid:3105331
Mullin JM et al. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport. 1989 Am. J. Physiol. pmid:2603953
Mills JW and Lubin M Effect of adenosine 3',5'-cyclic monophosphate on volume and cytoskeleton of MDCK cells. 1986 Am. J. Physiol. pmid:3006500
Feuilloley M et al. Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices. 1994 Am. J. Physiol. pmid:8141278
Foley JE et al. Glucose transport in isolated rat adipocytes with measurements of L-arabinose uptake. 1978 Am. J. Physiol. pmid:623288
Rosholt MN et al. High-fat diet reduces glucose transporter responses to both insulin and exercise. 1994 Am. J. Physiol. pmid:8304561
Ohnishi S et al. Delayed shortening and shrinkage of cochlear outer hair cells. 1992 Am. J. Physiol. pmid:1443102
Johnson LW and Smith CH Monosaccharide transport across microvillous membrane of human placenta. 1980 Am. J. Physiol. pmid:6990781
Muller J and Kachadorian WA Aggregate-carrying membranes during ADH stimulation and washout in toad bladder. 1984 Am. J. Physiol. pmid:6430101
Grisham MB et al. Endotoxemia and neutrophil activation in vivo. 1988 Am. J. Physiol. pmid:2834968
Goodyear LJ et al. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. 1991 Am. J. Physiol. pmid:1951679
Pearl M and Taylor A Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. 1983 Am. J. Physiol. pmid:6307056
Carter-Su C and Okamoto K Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. 1987 Am. J. Physiol. pmid:3551626
Craik JD et al. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. 1998 Am. J. Physiol. pmid:9458906
Kasbekar DK and Gordon GS Effects of colchicine and vinblastine on in vitro gastric secretion. 1979 Am. J. Physiol. pmid:312607
Goodyear LJ et al. Exercise-induced translocation of skeletal muscle glucose transporters. 1991 Am. J. Physiol. pmid:1662910
Schapiro FB et al. pH-independent retrograde targeting of glycolipids to the Golgi complex. 1998 Am. J. Physiol. pmid:9486120
Mullin JM et al. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells. 1992 Am. J. Physiol. pmid:1558165
Barnard RJ et al. Effects of maturation and aging on the skeletal muscle glucose transport system. 1992 Am. J. Physiol. pmid:1590372
Schneyer LH Differential effects of cytochalasin B on Na and K transport in a perfused salivary duct. 1974 Am. J. Physiol. pmid:4412815
Valant P and Erlij D K+-stimulated sugar uptake in skeletal muscle: role of cytoplasmic Ca2+. 1983 Am. J. Physiol. pmid:6346894
Malaisse WJ et al. Insulinotropic action of alpha-D-glucose pentaacetate: functional aspects. 1997 Am. J. Physiol. pmid:9435523
Sternlicht E et al. Mechanism of insulin action on glucose transport in rat skeletal muscle. 1988 Am. J. Physiol. pmid:3284385
Lipowsky HH et al. Leukocyte rolling velocity and its relation to leukocyte-endothelium adhesion and cell deformability. 1996 Am. J. Physiol. pmid:8967378
Peralta Soler A et al. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. 1996 Am. J. Physiol. pmid:8928850
Sakaida I et al. Phospholipid metabolism and intracellular Ca2+ homeostasis in cultured rat hepatocytes intoxicated with cyanide. 1992 Am. J. Physiol. pmid:1415517
Wright G and Hurn E Cytochalasin inhibition of slow tension increase in rat aortic rings. 1994 Am. J. Physiol. pmid:7943389
Marette A et al. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. 1992 Am. J. Physiol. pmid:1514590
Sumpio BE and Maack T Kinetics, competition, and selectivity of tubular absorption of proteins. 1982 Am. J. Physiol. pmid:7124951
Henquin JC and Lambert AE Bicarbonate modulation of glucose-9nduced biphasic insulin release by rat islets. 1976 Am. J. Physiol. pmid:788525
Youn JH et al. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. 1991 Am. J. Physiol. pmid:2003578
Stetson DL and Steinmetz PR Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. 1983 Am. J. Physiol. pmid:6408926
Ismail-Beigi F et al. Stimulation of glucose transport in Clone 9 cells by exposure to alkaline pH. 1990 Am. J. Physiol. pmid:2305872
Kimmich GA et al. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials. 1977 Am. J. Physiol. pmid:562624
Wang WH et al. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct. 1994 Am. J. Physiol. pmid:7943357
Tseng S et al. F-actin disruption attenuates agonist-induced [Ca2+], myosin phosphorylation, and force in smooth muscle. 1997 Am. J. Physiol. pmid:9227425
Salans LB et al. Effects of dietary composition on glucose metabolism in rat adipose cells. 1981 Am. J. Physiol. pmid:7008628
Abbott RE et al. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism. 1986 Am. J. Physiol. pmid:3717328
Ajubi NE et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. 1999 Am. J. Physiol. pmid:9886964
Goldblum SE et al. TNF-alpha induces endothelial cell F-actin depolymerization, new actin synthesis, and barrier dysfunction. 1993 Am. J. Physiol. pmid:8476021
Franceschi RT et al. Requirement for Na(+)-dependent ascorbic acid transport in osteoblast function. 1995 Am. J. Physiol. pmid:7611363
Wan X et al. Activation of mechanosensitive currents in traumatized membrane. 1999 Am. J. Physiol. pmid:9950759
Guerin MA and Loizzi RF Inhibition of mammary gland lactose secretion by colchicine and vincristine. 1978 Am. J. Physiol. pmid:645891
Kachadorian WA et al. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. 1979 Am. J. Physiol. pmid:107810
Jacobs DB et al. Alterations of glucose transporter systems in insulin-resistant uremic rats. 1989 Am. J. Physiol. pmid:2669514