CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
CREST Syndrome D017675 2 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Erythroblastosis, Fetal D004899 2 associated lipids
Wiskott-Aldrich Syndrome D014923 3 associated lipids
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Granulomatous Disease, Chronic D006105 4 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Pituitary Neoplasms D010911 4 associated lipids
Coronavirus Infections D018352 4 associated lipids
Chancroid D002602 4 associated lipids
Galactosemias D005693 5 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Trisomy D014314 6 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Aggressive Periodontitis D010520 8 associated lipids
Carbon Monoxide Poisoning D002249 9 associated lipids
Chondrosarcoma D002813 9 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Congenital Abnormalities D000013 11 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Eye Diseases D005128 12 associated lipids
Glucose Intolerance D018149 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Thrombocytopenia D013921 15 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Neutropenia D009503 15 associated lipids
Tongue Neoplasms D014062 15 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Lymphoma D008223 18 associated lipids
Wounds and Injuries D014947 20 associated lipids
Tuberculosis D014376 20 associated lipids
Anemia D000740 21 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Medulloblastoma D008527 22 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Birth Weight D001724 23 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Hyperinsulinism D006946 27 associated lipids
Insulinoma D007340 28 associated lipids
Kidney Diseases D007674 29 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Uremia D014511 33 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Cope DL et al. Domain assembly of the GLUT1 glucose transporter. 1994 Biochem. J. pmid:8002929
Maher F and Simpson IA The GLUT3 glucose transporter is the predominant isoform in primary cultured neurons: assessment by biosynthetic and photoaffinity labelling. 1994 Biochem. J. pmid:8042980
Doege H et al. Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. 2001 Biochem. J. pmid:11583593
Rubin RP et al. Activation of (arachidonyl) phosphatidylinositol turnover in rabbit neutrophils by the calcium ionophore A23187. 1981 Biochem. J. pmid:6796062
Koumanov F et al. Cell-surface biotinylation of GLUT4 using bis-mannose photolabels. 1998 Biochem. J. pmid:9494087
Good AH et al. Characterization of monoclonal antibodies that recognize band 4.5 polypeptides associated with nucleoside transport in pig erythrocytes. 1987 Biochem. J. pmid:3446189
Sorbara LR et al. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets. 1997 Biochem. J. pmid:9371709
Yano Y and May JM Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter. 1993 Biochem. J. pmid:8216214
McDonald TP and Henderson PJ Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. 2001 Biochem. J. pmid:11171069
Mesmer OT et al. Use of a genetic variant to study the hexose transport properties of human skin fibroblasts. 1990 Biochem. J. pmid:2306216
Docherty K et al. The permeability of rat liver lysosomes to sugars. Evidence for carrier-mediated facilitated diffusion. 1979 Biochem. J. pmid:220961
Threadgold LC et al. Monosaccharide transport into lactating-rat mammary acini. 1982 Biochem. J. pmid:6214256
Sofue M et al. Possible multifunction of glucose transporter. Transport of nicotinamide by reconstituted liposomes. 1992 Biochem. J. pmid:1463467
Welch RW et al. Ascorbic acid accumulation and transport in human fibroblasts. 1993 Biochem. J. pmid:8373364
Azhar S and Menon KM Receptor-mediated gonadotropin action in the ovary. Action of cytoskeletal element-disrupting agents on gonadotropin-induced steroidogenesis in rat luteal cells. 1981 Biochem. J. pmid:6272724
Bilan PJ and Klip A Glycation of the human erythrocyte glucose transporter in vitro and its functional consequences. 1990 Biochem. J. pmid:2363703
Vissers MC and Winterbourn CC Activation of human neutrophil gelatinase by endogenous serine proteinases. 1988 Biochem. J. pmid:2829854
Hallett MB and Campbell AK Uptake of liposomes containing the photoprotein obelin by rat isolated adipocytes. Adhesion, endocytosis or fusion? 1980 Biochem. J. pmid:7236227
Amrolia P et al. An investigation of glucose uptake in relation to steroidogenesis in rat testis and tumour Leydig cells. 1988 Biochem. J. pmid:2833234
Rossier MF et al. Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments. 1991 Biochem. J. pmid:1849402
Waddell ID et al. Identification and characterization of a hepatic microsomal glucose transport protein. T3 of the glucose-6-phosphatase system? 1991 Biochem. J. pmid:1850983
Davies P et al. Selective release of lysosomal hydrolases from phagocytic cells by cytochalasin B. 1973 Biochem. J. pmid:4737379
Kasanicki MA et al. Identification and characterization of the glucose-transport protein of the bovine blood/brain barrier. 1987 Biochem. J. pmid:3120700
Zechel K The interaction of 6-propionyl-2-(NN-dimethyl)aminonaphthalene (PRODAN)-labelled actin with actin-binding proteins and drugs. 1993 Biochem. J. pmid:8452529
Muiry JA et al. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae. 1993 Biochem. J. pmid:8384447
Afzal I et al. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. 2002 Biochem. J. pmid:12133004
Rist RJ et al. Effects of macrophage colony-stimulating factor and phorbol myristate acetate on 2-D-deoxyglucose transport and superoxide production in rat peritoneal macrophages. 1991 Biochem. J. pmid:1652936
Moscat G et al. Ionophore A23187 induces a refractory state in thrombin-activated release of inositol phosphates. 1986 Biochem. J. pmid:3099773
Loten EG and Jeanrenaud B Effects of cytochalasin B, colchicine and vincristine on the metabolism of isolated fat-cells. 1974 Biochem. J. pmid:4455189
Yi CK et al. Characterization of functional human erythrocyte-type glucose transporter (GLUT1) expressed in insect cells using a recombinant baculovirus. 1992 Biochem. J. pmid:1590751
Greco-Perotto R et al. Insulin modifies the properties of glucose transporters in rat brown adipose tissue. 1987 Biochem. J. pmid:3318814
Cronstein BN and Haines KA Stimulus-response uncoupling in the neutrophil. Adenosine A2-receptor occupancy inhibits the sustained, but not the early, events of stimulus transduction in human neutrophils by a mechanism independent of actin-filament formation. 1992 Biochem. J. pmid:1311169
Obermaier-Kusser B et al. Regulation of glucose carrier activity by AlCl3 and phospholipase C in fat-cells. 1988 Biochem. J. pmid:3066348
Joost HG et al. Qualitative and quantitative comparison of glucose transport activity and glucose transporter concentration in plasma membranes from basal and insulin-stimulated rat adipose cells. 1988 Biochem. J. pmid:3277616
Mühlbacher C et al. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. 1988 Biochem. J. pmid:3281656
Zaninetti D et al. Effects of insulin on glucose transport and glucose transporters in rat heart. 1988 Biochem. J. pmid:3281662
Obermaier-Kusser B et al. Further evidence for a two-step model of glucose-transport regulation. Inositol phosphate-oligosaccharides regulate glucose-carrier activity. 1989 Biochem. J. pmid:2803236
Gélas P et al. Human neutrophil phospholipase D activation by N-formylmethionyl-leucylphenylalanine reveals a two-step process for the control of phosphatidylcholine breakdown and oxidative burst. 1992 Biochem. J. pmid:1417792
Guignard F and Markert M The nucleoside diphosphate kinase of human neutrophils. 1996 Biochem. J. pmid:8645210
Hallett MB and Campbell AK Two distinct mechanisms for stimulation of oxygen-radical production by polymorphonuclear leucocytes. 1983 Biochem. J. pmid:6318738
Corps AN et al. Kinetic evidence for a common mechanism of capping on lymphocytes. 1982 Biochem. J. pmid:6981413
Maguire GA et al. Sugar transport in rat liver lysosomes. Direct demonstration by using labelled sugars. 1983 Biochem. J. pmid:6409099
Halperin ML and Cheema-Dhadli S Comparison of glucose and fructose transport into adipocytes of the rat. 1982 Biochem. J. pmid:7046737
Van der Wijk T et al. Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. 1999 Biochem. J. pmid:10527936
Cherqui G et al. Evidence for surface glycoprotein involvement in the intracellular bioactivity of insulin in rat adipocytes. 1983 Biochem. J. pmid:6351847
Marcil J et al. Monosodium urate-crystal-stimulated phospholipase D in human neutrophils. 1999 Biochem. J. pmid:9882614
Roberts PA et al. Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. 1985 Biochem. J. pmid:4004786
Savini I et al. Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. 2000 Biochem. J. pmid:10642526
Goebeler M et al. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. 1995 Biochem. J. pmid:7542868
Lakshmanan J Involvement of cytoskeletal structures in nerve-growth-factor-mediated induction of ornithine decarboxylase. 1979 Biochem. J. pmid:571277