CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Glioma D005910 112 associated lipids
Insulin Resistance D007333 99 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Arteriosclerosis D001161 86 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Alzheimer Disease D000544 76 associated lipids
Leukemia D007938 74 associated lipids
Melanoma D008545 69 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Asthma D001249 52 associated lipids
Starvation D013217 47 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Uremia D014511 33 associated lipids
Micronuclei, Chromosome-Defective D048629 33 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Kidney Diseases D007674 29 associated lipids
Insulinoma D007340 28 associated lipids
Hyperinsulinism D006946 27 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Birth Weight D001724 23 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Medulloblastoma D008527 22 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Anemia D000740 21 associated lipids
Wounds and Injuries D014947 20 associated lipids
Tuberculosis D014376 20 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Lymphoma D008223 18 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Thrombocytopenia D013921 15 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Hosomura N et al. HCV-related proteins activate Kupffer cells isolated from human liver tissues. 2011 Dig. Dis. Sci. pmid:20848204
Gowrishankar G et al. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues. 2011 PLoS ONE pmid:22073218
Liu J et al. Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. 2011 Theriogenology pmid:21752443
Zampolla T et al. Cytoskeleton proteins F-actin and tubulin distribution and interaction with mitochondria in the granulosa cells surrounding stage III zebrafish (Danio rerio) oocytes. 2011 Theriogenology pmid:21752457
Meng Q et al. Enucleation of demecolcine-treated bovine oocytes in cytochalasin-free medium: mechanism investigation and practical improvement. 2011 Cell Reprogram pmid:21740270
Cakmak Demircigil G et al. Micronucleus frequencies in peripheral blood lymphocytes of children with chronic kidney disease. 2011 Mutagenesis pmid:21669938
Wang XL et al. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement. 2011 Plant Cell Environ. pmid:21443604
Chan HH et al. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. 2011 J. Nat. Prod. pmid:21417387
Robichaud T et al. Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site. 2011 Biochemistry pmid:21384913
SerebrianyÄ­ AM et al. [Distribution of individuals by spontaneous frequencies of lymphocytes with micronuclei. Particularity and consequences]. 2011 Tsitologiia pmid:21473112
Sun SC et al. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. 2011 PLoS ONE pmid:21494665
Blodgett AB et al. A fluorescence method for measurement of glucose transport in kidney cells. 2011 Diabetes Technol. Ther. pmid:21510766
Pryor JH et al. Cryopreservation of in vitro produced bovine embryos: effects of lipid segregation and post-thaw laser assisted hatching. 2011 Theriogenology pmid:20833420
Burgaz S et al. Micronucleus frequencies in lymphocytes and buccal epithelial cells from patients having head and neck cancer and their first-degree relatives. 2011 Mutagenesis pmid:21248276
Bai C et al. Diploid oocyte formation and tetraploid embryo development induced by cytochalasin B in bovine. 2011 Cell Reprogram pmid:21235344
Porter-Turner MM et al. Relationship between erythrocyte GLUT1 function and membrane glycation in type 2 diabetes. 2011 Br. J. Biomed. Sci. pmid:22263435
Yamada C et al. Vitrification with glutamine improves maturation rate of vitrified / warmed immature bovine oocytes. 2011 Reprod. Domest. Anim. pmid:20345596
Noipha K et al. Carbazoles and coumarins from Clausena harmandiana stimulate glucose uptake in L6 myotubes. 2010 Diabetes Res. Clin. Pract. pmid:20888659
Elhajouji A Mitomycin C, 5-fluoruracil, colchicine and etoposide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Novartis in support of OECD draft Test Guideline 487. 2010 Mutat. Res. pmid:20338262
Schuler M et al. Evaluation of phenolphthalein, diazepam and quinacrine dihydrochloride in the in vitro mammalian cell micronucleus test in Chinese hamster ovary (CHO) and TK6 cells. 2010 Mutat. Res. pmid:20399283