CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Congenital Abnormalities D000013 11 associated lipids
Adenocarcinoma D000230 166 associated lipids
Alzheimer Disease D000544 76 associated lipids
Anemia D000740 21 associated lipids
Arteriosclerosis D001161 86 associated lipids
Asthma D001249 52 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Birth Weight D001724 23 associated lipids
Body Weight D001835 333 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Carbon Monoxide Poisoning D002249 9 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Chancroid D002602 4 associated lipids
Chondrosarcoma D002813 9 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Erythroblastosis, Fetal D004899 2 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Eye Diseases D005128 12 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Galactosemias D005693 5 associated lipids
Glioma D005910 112 associated lipids
Granulomatous Disease, Chronic D006105 4 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypertension D006973 115 associated lipids
Hypoglycemia D007003 13 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Inflammation D007249 119 associated lipids
Insulin Resistance D007333 99 associated lipids
Insulinoma D007340 28 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Kidney Diseases D007674 29 associated lipids
Leukemia D007938 74 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Lung Neoplasms D008175 171 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lymphoma D008223 18 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Renfro JL Calcium transport across peritubular surface of the marine teleost renal tubule. 1978 Am. J. Physiol. pmid:665777
Garland A et al. Activated eosinophils elicit substance P release from cultured dorsal root ganglion neurons. 1997 Am. J. Physiol. pmid:9374740
She ZW et al. Tumor necrosis factor primes neutrophils for hypochlorous acid production. 1989 Am. J. Physiol. pmid:2558582
Mullin JM et al. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport. 1989 Am. J. Physiol. pmid:2603953
Feuilloley M et al. Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices. 1994 Am. J. Physiol. pmid:8141278
Rosholt MN et al. High-fat diet reduces glucose transporter responses to both insulin and exercise. 1994 Am. J. Physiol. pmid:8304561
Johnson LW and Smith CH Monosaccharide transport across microvillous membrane of human placenta. 1980 Am. J. Physiol. pmid:6990781
Grisham MB et al. Endotoxemia and neutrophil activation in vivo. 1988 Am. J. Physiol. pmid:2834968
Goodyear LJ et al. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. 1991 Am. J. Physiol. pmid:1951679
Carter-Su C and Okamoto K Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. 1987 Am. J. Physiol. pmid:3551626
Mullin JM et al. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells. 1992 Am. J. Physiol. pmid:1558165
Barnard RJ et al. Effects of maturation and aging on the skeletal muscle glucose transport system. 1992 Am. J. Physiol. pmid:1590372
Malaisse WJ et al. Insulinotropic action of alpha-D-glucose pentaacetate: functional aspects. 1997 Am. J. Physiol. pmid:9435523
Lipowsky HH et al. Leukocyte rolling velocity and its relation to leukocyte-endothelium adhesion and cell deformability. 1996 Am. J. Physiol. pmid:8967378
Henquin JC and Lambert AE Bicarbonate modulation of glucose-9nduced biphasic insulin release by rat islets. 1976 Am. J. Physiol. pmid:788525
Youn JH et al. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. 1991 Am. J. Physiol. pmid:2003578
Salans LB et al. Effects of dietary composition on glucose metabolism in rat adipose cells. 1981 Am. J. Physiol. pmid:7008628
Ajubi NE et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. 1999 Am. J. Physiol. pmid:9886964
Guerin MA and Loizzi RF Inhibition of mammary gland lactose secretion by colchicine and vincristine. 1978 Am. J. Physiol. pmid:645891
Kachadorian WA et al. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. 1979 Am. J. Physiol. pmid:107810