CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Micronuclei, Chromosome-Defective D048629 33 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Coronavirus Infections D018352 4 associated lipids
Glucose Intolerance D018149 13 associated lipids
CREST Syndrome D017675 2 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Wounds and Injuries D014947 20 associated lipids
Wiskott-Aldrich Syndrome D014923 3 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Uremia D014511 33 associated lipids
Tuberculosis D014376 20 associated lipids
Trisomy D014314 6 associated lipids
Tongue Neoplasms D014062 15 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Thrombocytopenia D013921 15 associated lipids
Starvation D013217 47 associated lipids
Pituitary Neoplasms D010911 4 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Aggressive Periodontitis D010520 8 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Neutropenia D009503 15 associated lipids
Melanoma D008545 69 associated lipids
Medulloblastoma D008527 22 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Lymphoma D008223 18 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia D007938 74 associated lipids
Kidney Diseases D007674 29 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Insulinoma D007340 28 associated lipids
Insulin Resistance D007333 99 associated lipids
Inflammation D007249 119 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Hypoglycemia D007003 13 associated lipids
Hypertension D006973 115 associated lipids
Hyperinsulinism D006946 27 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Granulomatous Disease, Chronic D006105 4 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Ciaraldi TP et al. Insulin-stimulated glucose transport in human adipocytes. 1979 Am. J. Physiol. pmid:443417
She ZW et al. Tumor necrosis factor primes neutrophils for hypochlorous acid production. 1989 Am. J. Physiol. pmid:2558582
Mills JW and Lubin M Effect of adenosine 3',5'-cyclic monophosphate on volume and cytoskeleton of MDCK cells. 1986 Am. J. Physiol. pmid:3006500
Feuilloley M et al. Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices. 1994 Am. J. Physiol. pmid:8141278
Bleakman D and Naftalin RJ Hypertonic fluid absorption from rabbit descending colon in vitro. 1990 Am. J. Physiol. pmid:2107755
Rosholt MN et al. High-fat diet reduces glucose transporter responses to both insulin and exercise. 1994 Am. J. Physiol. pmid:8304561
Muller J and Kachadorian WA Aggregate-carrying membranes during ADH stimulation and washout in toad bladder. 1984 Am. J. Physiol. pmid:6430101
Carter-Su C and Okamoto K Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. 1987 Am. J. Physiol. pmid:3551626
Malaisse WJ et al. Insulinotropic action of alpha-D-glucose pentaacetate: functional aspects. 1997 Am. J. Physiol. pmid:9435523
Lipowsky HH et al. Leukocyte rolling velocity and its relation to leukocyte-endothelium adhesion and cell deformability. 1996 Am. J. Physiol. pmid:8967378
Sakaida I et al. Phospholipid metabolism and intracellular Ca2+ homeostasis in cultured rat hepatocytes intoxicated with cyanide. 1992 Am. J. Physiol. pmid:1415517
Grinstein S et al. Phorbol ester-induced changes of cytoplasmic pH in neutrophils: role of exocytosis in Na+-H+ exchange. 1985 Am. J. Physiol. pmid:2579574
Youn JH et al. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. 1991 Am. J. Physiol. pmid:2003578
Stetson DL and Steinmetz PR Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. 1983 Am. J. Physiol. pmid:6408926
Ismail-Beigi F et al. Stimulation of glucose transport in Clone 9 cells by exposure to alkaline pH. 1990 Am. J. Physiol. pmid:2305872
Stahl GL et al. Eicosanoid production from porcine neutrophils and platelets: differential production with various agonists. 1997 Am. J. Physiol. pmid:9227410
Tseng S et al. F-actin disruption attenuates agonist-induced [Ca2+], myosin phosphorylation, and force in smooth muscle. 1997 Am. J. Physiol. pmid:9227425
Salans LB et al. Effects of dietary composition on glucose metabolism in rat adipose cells. 1981 Am. J. Physiol. pmid:7008628
Ajubi NE et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. 1999 Am. J. Physiol. pmid:9886964
Franceschi RT et al. Requirement for Na(+)-dependent ascorbic acid transport in osteoblast function. 1995 Am. J. Physiol. pmid:7611363