CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Erythroblastosis, Fetal D004899 2 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Eye Diseases D005128 12 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Galactosemias D005693 5 associated lipids
Glioma D005910 112 associated lipids
Granulomatous Disease, Chronic D006105 4 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypertension D006973 115 associated lipids
Hypoglycemia D007003 13 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Inflammation D007249 119 associated lipids
Insulin Resistance D007333 99 associated lipids
Insulinoma D007340 28 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Qu C et al. The role of the cytoskeleton in the formation of gap junctions by Connexin 30. 2009 Exp. Cell Res. pmid:19285977
Serda RE et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. 2009 Biomaterials pmid:19215978
Pérez A et al. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. 2009 Am. J. Physiol., Cell Physiol. pmid:19386788
Barros LF et al. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. 2009 J. Neurochem. pmid:19393014
Franck T et al. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase. 2009 Vet. Immunol. Immunopathol. pmid:19328559
Liu X et al. Stretch-activated potassium channels in hypotonically induced blebs of atrial myocytes. 2008 Nov-Dec J. Membr. Biol. pmid:19015804
Fellows MD et al. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. II: Practical aspects with toxic agents. 2008 Aug-Sep Mutat. Res. pmid:18602493
Lorge E et al. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. 2008 Aug-Sep Mutat. Res. pmid:18602494
Gibbs ME et al. Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis. 2008 Neuropsychopharmacology pmid:18046311
John SA et al. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. 2008 Pflugers Arch. pmid:18071748
Pinto V et al. Oxidative stress and the genomic regulation of aldosterone-stimulated NHE1 activity in SHR renal proximal tubular cells. 2008 Mol. Cell. Biochem. pmid:18095144
Giambelluca MS and Gende OA Hydrogen peroxide activates calcium influx in human neutrophils. 2008 Mol. Cell. Biochem. pmid:18008137
Kole MH et al. Action potential generation requires a high sodium channel density in the axon initial segment. 2008 Nat. Neurosci. pmid:18204443
Koltsova SV et al. Vascular smooth muscle contraction evoked by cell volume modulation: role of the cytoskeleton network. 2008 Cell. Physiol. Biochem. pmid:18209469
Chen JJ et al. Neolignans, a coumarinolignan, lignan derivatives, and a chromene: anti-inflammatory constituents from Zanthoxylum avicennae. 2008 J. Nat. Prod. pmid:18211005
Chen DC et al. Eugenol inhibited the antimicrobial functions of neutrophils. 2008 J Endod pmid:18215676
Corrêa JR et al. Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin-dependent endocytosis. 2008 Exp. Parasitol. pmid:18234197
Bandyopadhyay S et al. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. 2008 Mol. Cell. Endocrinol. pmid:18346843
Terracciano S et al. Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting Jaspamide. 2008 Bioorg. Med. Chem. pmid:18508272
Ock SA and Rho GJ Parthenogenetic development and ploidy following various chemical activation regiments of bovine oocytes. 2008 J. Vet. Med. Sci. pmid:19057133