CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Thrombocytopenia D013921 15 associated lipids
Starvation D013217 47 associated lipids
Pituitary Neoplasms D010911 4 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Aggressive Periodontitis D010520 8 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Neutropenia D009503 15 associated lipids
Melanoma D008545 69 associated lipids
Medulloblastoma D008527 22 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Lymphoma D008223 18 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia D007938 74 associated lipids
Kidney Diseases D007674 29 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Betz AL et al. Hexose transport and phosphorylation by capillaries isolated from rat brain. 1979 Am. J. Physiol. pmid:434144
Fushiki T et al. Changes in glucose transporters in muscle in response to exercise. 1989 Am. J. Physiol. pmid:2655468
Nishimura H et al. Postreceptor defect in insulin action in streptozotocin-induced diabetic rats. 1989 Am. J. Physiol. pmid:2655470
Cheeseman CI and Maenz DD Rapid regulation of D-glucose transport in basolateral membrane of rat jejunum. 1989 Am. J. Physiol. pmid:2655474
Singhal PC et al. Effects of vasoactive agents on uptake of immunoglobulin G complexes by mesangial cells. 1990 Am. J. Physiol. pmid:2156448
Sayós J et al. Regulation of nitrobenzylthioninosine-sensitive adenosine uptake by cultured kidney cells. 1994 Am. J. Physiol. pmid:7977779
Mattana J and Singhal PC Macrophage Fc receptor activity modulates mesangial cell proliferation and matrix synthesis. 1994 Am. J. Physiol. pmid:8184889
Reshkin SJ and Ahearn GA Basolateral glucose transport by intestine of teleost, Oreochromis mossambicus. 1987 Am. J. Physiol. pmid:3030144
Fürnsinn C et al. More marked stimulation by lithium than insulin of the glycogenic pathway in rat skeletal muscle. 1997 Am. J. Physiol. pmid:9316440
Ehrhardt RA and Bell AW Developmental increases in glucose transporter concentration in the sheep placenta. 1997 Am. J. Physiol. pmid:9321896
Lichtman SN et al. Endocytosis and Ca2+ are required for endotoxin-stimulated TNF-alpha release by rat Kupffer cells. 1996 Am. J. Physiol. pmid:8944708
Uemura N et al. Decreased secretion due to a Ca2+ influx defect in frog peptic cells isolated with EGTA. 1990 Am. J. Physiol. pmid:2159219
Grinstein S et al. Phorbol ester-induced changes of cytoplasmic pH in neutrophils: role of exocytosis in Na+-H+ exchange. 1985 Am. J. Physiol. pmid:2579574
Stahl GL et al. Eicosanoid production from porcine neutrophils and platelets: differential production with various agonists. 1997 Am. J. Physiol. pmid:9227410
Strek ME et al. Effect of mode of activation of human eosinophils on tracheal smooth muscle contraction in guinea pigs. 1993 Am. J. Physiol. pmid:8498524
Halm DR et al. Selective stimulation of epithelial cells in colonic crypts: relation to active chloride secretion. 1995 Am. J. Physiol. pmid:7485463
Karnieli E et al. Discrepancy between glucose transport and transporters in human femoral adipocytes. 1989 Am. J. Physiol. pmid:2643341
Longo N et al. Influx and efflux of 3-O-methyl-D-glucose by cultured human fibroblasts. 1988 Am. J. Physiol. pmid:3364550
Wade JB and Kachadorian WA Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. 1988 Am. J. Physiol. pmid:3140672
Kimmich GA and Randles J Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B. 1979 Am. J. Physiol. pmid:464042