CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Chondrosarcoma D002813 9 associated lipids
Anemia D000740 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Congenital Abnormalities D000013 11 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Wiskott-Aldrich Syndrome D014923 3 associated lipids
Erythroblastosis, Fetal D004899 2 associated lipids
Micronuclei, Chromosome-Defective D048629 33 associated lipids
Medulloblastoma D008527 22 associated lipids
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Insulin Resistance D007333 99 associated lipids
Aggressive Periodontitis D010520 8 associated lipids
Glucose Intolerance D018149 13 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Coronavirus Infections D018352 4 associated lipids
Chancroid D002602 4 associated lipids
Trisomy D014314 6 associated lipids
CREST Syndrome D017675 2 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Bondareff W and Tuttle RL Cortical cytoplasm and configurational changes of RGC-6 cells exposed to cytochalasin B. 1975 Am. J. Anat. pmid:1211367
Holtzer H et al. Effects of cytochalasin-B and colcimide on cells in muscle cultures. 1974 Am. J. Anat. pmid:4413125
Holtzer H et al. Effects of Cytochalasin-B and colcimide on cells in muscle cultures. 1974 Am. J. Anat. pmid:4440631
Webster W and Langman J The effect of cytochalasin B on the neuroepithelial cells of the mouse embryo. 1978 Am. J. Anat. pmid:567005
Berkow RL and Dodson RW Functional analysis of the marginating pool of human polymorphonuclear leukocytes. 1987 Am. J. Hematol. pmid:3026170
Standley PR and Rose KA Insulin and insulin-like growth factor-1 modulation of glucose transport in arterial smooth muscle cells: implication of GLUT-4 in the vasculature. 1994 Am. J. Hypertens. pmid:8031552
Wann JG et al. Enhanced expression of glucose transporter 1 on erythrocyte membrane in hemodialysis patients: the possible role in erythrocyte ascorbate recycling. 2006 Am. J. Kidney Dis. pmid:16731301
Jacobs DB Fat cells: model system to investigate molecular mechanism(s) of sulfonylurea-potentiated glucose transport. 1985 Am. J. Med. pmid:3931463
Sato N et al. Hyposmolarity stimulates myeloperoxidase exocytosis from human polymorphonuclear leukocytes. 1990 Am. J. Med. Sci. pmid:2159710
Mooradian AD and Morin AM Brain uptake of glucose in diabetes mellitus: the role of glucose transporters. 1991 Am. J. Med. Sci. pmid:2000888
Liu S et al. Dynamic modulation of cytoskeleton during in vitro maturation in human oocytes. 2010 Am. J. Obstet. Gynecol. pmid:20579967
Kniss DA et al. Expression of functional insulin-like growth factor-I receptors by human amnion cells. 1993 Am. J. Obstet. Gynecol. pmid:8372873
Aikawa M et al. Interactions between macrophagelike cells and Leishmania braziliensis in vitro. 1982 Am. J. Pathol. pmid:7091302
Elbim C et al. Heterogeneity in Lewis-X and sialyl-Lewis-X antigen expression on monocytes in whole blood: relation to stimulus-induced oxidative burst. 1998 Am. J. Pathol. pmid:9546369
Okayasu T et al. Cytochalasin delays but does not prevent cell death from anoxia. 1984 Am. J. Pathol. pmid:6541879
O'Flaherty JT et al. Neutrophil aggregation and degranulation. Effect of arachidonic acid. 1979 Am. J. Pathol. pmid:453323
O'Flaherty JT et al. Substances which aggregate neutrophils. Mechanism of action. 1978 Am. J. Pathol. pmid:356621
Hsu LS and Becker EL Volume changes induced in rabbit polymorphonuclear leukocytes by chemotactic factor and cytochalasin B. 1975 Am. J. Pathol. pmid:1180327
Ogawa H et al. Comparative study of eosinophil and neutrophil chemotaxis and enzyme release. 1981 Am. J. Pathol. pmid:7294162
Holland JA et al. Atherogenic levels of low-density lipoprotein increase endocytotic activity in cultured human endothelial cells. 1992 Am. J. Pathol. pmid:1546741