CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Foreign-Body Reaction D005549 10 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Congenital Abnormalities D000013 11 associated lipids
Eye Diseases D005128 12 associated lipids
Glucose Intolerance D018149 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Thrombocytopenia D013921 15 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Neutropenia D009503 15 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Sternlicht E et al. Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. 1989 Am. J. Physiol. pmid:2645782
Singhal PC et al. Effects of vasoactive agents on uptake of immunoglobulin G complexes by mesangial cells. 1990 Am. J. Physiol. pmid:2156448
Sayós J et al. Regulation of nitrobenzylthioninosine-sensitive adenosine uptake by cultured kidney cells. 1994 Am. J. Physiol. pmid:7977779
Mullin JM et al. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport. 1989 Am. J. Physiol. pmid:2603953
Hardy MA and DiBona DR Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder. 1982 Am. J. Physiol. pmid:6810708
Mattana J and Singhal PC Macrophage Fc receptor activity modulates mesangial cell proliferation and matrix synthesis. 1994 Am. J. Physiol. pmid:8184889
Grisham MB et al. Endotoxemia and neutrophil activation in vivo. 1988 Am. J. Physiol. pmid:2834968
Goodyear LJ et al. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. 1991 Am. J. Physiol. pmid:1951679
Goodyear LJ et al. Exercise-induced translocation of skeletal muscle glucose transporters. 1991 Am. J. Physiol. pmid:1662910
Fürnsinn C et al. More marked stimulation by lithium than insulin of the glycogenic pathway in rat skeletal muscle. 1997 Am. J. Physiol. pmid:9316440
Ehrhardt RA and Bell AW Developmental increases in glucose transporter concentration in the sheep placenta. 1997 Am. J. Physiol. pmid:9321896
Lichtman SN et al. Endocytosis and Ca2+ are required for endotoxin-stimulated TNF-alpha release by rat Kupffer cells. 1996 Am. J. Physiol. pmid:8944708
Marette A et al. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. 1992 Am. J. Physiol. pmid:1514590
Henquin JC and Lambert AE Bicarbonate modulation of glucose-9nduced biphasic insulin release by rat islets. 1976 Am. J. Physiol. pmid:788525
Bentzel CJ et al. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. 1980 Am. J. Physiol. pmid:7435552
Wang WH et al. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct. 1994 Am. J. Physiol. pmid:7943357
Abbott RE et al. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism. 1986 Am. J. Physiol. pmid:3717328
Strek ME et al. Effect of mode of activation of human eosinophils on tracheal smooth muscle contraction in guinea pigs. 1993 Am. J. Physiol. pmid:8498524
Halm DR et al. Selective stimulation of epithelial cells in colonic crypts: relation to active chloride secretion. 1995 Am. J. Physiol. pmid:7485463
Jacobs DB et al. Alterations of glucose transporter systems in insulin-resistant uremic rats. 1989 Am. J. Physiol. pmid:2669514