CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Insulin Resistance D007333 99 associated lipids
Aggressive Periodontitis D010520 8 associated lipids
Glucose Intolerance D018149 13 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Infectious Mononucleosis D007244 5 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Coronavirus Infections D018352 4 associated lipids
Chancroid D002602 4 associated lipids
Trisomy D014314 6 associated lipids
CREST Syndrome D017675 2 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Rubin RP et al. Activation of (arachidonyl) phosphatidylinositol turnover in rabbit neutrophils by the calcium ionophore A23187. 1981 Biochem. J. pmid:6796062
Sorbara LR et al. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets. 1997 Biochem. J. pmid:9371709
Yano Y and May JM Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter. 1993 Biochem. J. pmid:8216214
Colville CA et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. 1993 Biochem. J. pmid:8457197
Vissers MC and Winterbourn CC Activation of human neutrophil gelatinase by endogenous serine proteinases. 1988 Biochem. J. pmid:2829854
Amrolia P et al. An investigation of glucose uptake in relation to steroidogenesis in rat testis and tumour Leydig cells. 1988 Biochem. J. pmid:2833234
Pinches SA et al. Preparation and characterization of basolateral membrane vesicles from pig and human colonocytes: the mechanism of glucose transport. 1993 Biochem. J. pmid:8396917
Rossier MF et al. Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments. 1991 Biochem. J. pmid:1849402
Afzal I et al. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. 2002 Biochem. J. pmid:12133004
Rist RJ et al. Effects of macrophage colony-stimulating factor and phorbol myristate acetate on 2-D-deoxyglucose transport and superoxide production in rat peritoneal macrophages. 1991 Biochem. J. pmid:1652936
Loten EG and Jeanrenaud B Effects of cytochalasin B, colchicine and vincristine on the metabolism of isolated fat-cells. 1974 Biochem. J. pmid:4455189
Joost HG et al. Qualitative and quantitative comparison of glucose transport activity and glucose transporter concentration in plasma membranes from basal and insulin-stimulated rat adipose cells. 1988 Biochem. J. pmid:3277616
Mühlbacher C et al. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. 1988 Biochem. J. pmid:3281656
Zaninetti D et al. Effects of insulin on glucose transport and glucose transporters in rat heart. 1988 Biochem. J. pmid:3281662
Gélas P et al. Human neutrophil phospholipase D activation by N-formylmethionyl-leucylphenylalanine reveals a two-step process for the control of phosphatidylcholine breakdown and oxidative burst. 1992 Biochem. J. pmid:1417792
Hallett MB and Campbell AK Two distinct mechanisms for stimulation of oxygen-radical production by polymorphonuclear leucocytes. 1983 Biochem. J. pmid:6318738
Halperin ML and Cheema-Dhadli S Comparison of glucose and fructose transport into adipocytes of the rat. 1982 Biochem. J. pmid:7046737
Van der Wijk T et al. Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. 1999 Biochem. J. pmid:10527936
Roberts PA et al. Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. 1985 Biochem. J. pmid:4004786
Goebeler M et al. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. 1995 Biochem. J. pmid:7542868
Garcia-Mateu S et al. Binding of [3H]cytochalasin B to tumoral islet cells. 1990 Biochem. Int. pmid:2167090
Uezato T Photoaffinity labeling of the K562 cell membrane D-glucose transporter with cytochalasin B. 1986 Biochem. Int. pmid:3457566
Albert SG Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. 1984 Biochem. Int. pmid:6541046
Fukai F et al. Fibronectin stimulates protein synthesis in cultured fibroblastic cells. 1992 Biochem. Int. pmid:1417873
Morita K et al. Effects of cytoskeleton-disrupting agents on tyrosine transport into cultured bovine adrenal chromaffin cells. 1989 Biochem. Int. pmid:2783150
Chen SR and Lo TC Genetic evidence indicating the identity of the cytochalasin B photolabelled components in rat myoblasts. 1990 Biochem. Int. pmid:2353924
Ranjan R et al. Effect of actin polymerization inhibitor during oocyte maturation on parthenogenetic embryo development and ploidy in Capra hircus. 2013 Biochem. Genet. pmid:23846112
Bosman GJ and Kay MM Alterations of band 3 transport protein by cellular aging and disease: erythrocyte band 3 and glucose transporter share a functional relationship. 1990 Biochem. Cell Biol. pmid:2085437
Krupka RM and Devés R Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes. 1986 Biochem. Cell Biol. pmid:2435306
Pomorski P et al. Reversible changes in size of cell nuclei isolated from Amoeba proteus: role of the cytoskeleton. 2000 Biochem. Cell Biol. pmid:11012088
Craik JD et al. Identification of glucose and nucleoside transport proteins in neonatal pig erythrocytes using monoclonal antibodies against band 4.5 polypeptides of adult human and pig erythrocytes. 1988 Biochem. Cell Biol. pmid:3143374
Burdett E and Klip A Exofacial regions of the glucose transporter of human erythrocytes: detection with polyclonal antibodies. 1988 Biochem. Cell Biol. pmid:3214568
Klip A et al. Chemical and genetic comparison of the glucose and nucleoside transporters. 1986 Biochem. Cell Biol. pmid:3828109
Klip A et al. Chemical identity of the glucose transporter with the [3H]cytochalasin B-photolabelled component of human erythrocyte membranes. Equal sensitivity to trypsin and endoglycosidase F. 1984 Biochem. Biophys. Res. Commun. pmid:6430291
Smith RJ et al. Properties of interleukin-1 as a complete secretagogue for human neutrophils. 1985 Biochem. Biophys. Res. Commun. pmid:2992505
Ito M et al. Possible involvement of microfilaments in protein kinase C translocation. 1989 Biochem. Biophys. Res. Commun. pmid:2499332
Kaneko I et al. Effect of metabolic inhibitors on the agglutination of tumor cells by concanavalin A and Ricinus communis agglutinin. 1973 Biochem. Biophys. Res. Commun. pmid:4347894
Hanover JA Intracellular transport of VSV G protein occurs in cells lacking a nuclear envelope. 1988 Biochem. Biophys. Res. Commun. pmid:2833898
Pratt SE and Germinario RJ Differential glycosylation of the glucose transporter coincides with enhanced sugar transport in respiration deficient cells. 1994 Biochem. Biophys. Res. Commun. pmid:8185581
Seifert R and Schächtele C Studies with protein kinase C inhibitors presently available cannot elucidate the role of protein kinase C in the activation of NADPH oxidase. 1988 Biochem. Biophys. Res. Commun. pmid:2835037
McDaniel M et al. Effects of cytochalasins B and D on alloxan inhibition of insulin release. 1975 Biochem. Biophys. Res. Commun. pmid:1103887
Rubanyi GM et al. Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. 1991 Biochem. Biophys. Res. Commun. pmid:1662497
Sheikh S et al. Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. 1997 Biochem. Biophys. Res. Commun. pmid:9325191
Kusiak JW et al. Factors that influence the uptake of beta-hexosaminidase A by rat peritoneal macrophages. 1980 Biochem. Biophys. Res. Commun. pmid:7387695
Klip A et al. Recruitment of GLUT-4 glucose transporters by insulin in diabetic rat skeletal muscle. 1990 Biochem. Biophys. Res. Commun. pmid:2241964
Mukherjee SP et al. Stimulation of glucose transport and oxidation in adipocytes by fatty acids: evidence for a regulatory role in the cellular response to insulin. 1980 Biochem. Biophys. Res. Commun. pmid:6994726
Kuroki M and Minakami S Extracellular ATP triggers superoxide production in human neutrophils. 1989 Biochem. Biophys. Res. Commun. pmid:2546551
Pelzl L et al. Translational regulation of the serum- and glucocorticoid-inducible kinase-1 (SGK1) in platelets. 2012 Biochem. Biophys. Res. Commun. pmid:22809514
Gomez-Cambronero J et al. The diacylglycerol kinase inhibitor R59022 potentiates superoxide production but not secretion induced by fMet-Leu-Phe: effects of leupeptin and the protein kinase C inhibitor H-7. 1987 Biochem. Biophys. Res. Commun. pmid:2823810
Vogt B et al. The phorbol ester TPA induces a translocation of the insulin sensitive glucose carrier (GLUT4) in fat cells. 1990 Biochem. Biophys. Res. Commun. pmid:2189400