CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Carcinoma 256, Walker D002279 22 associated lipids
Birth Weight D001724 23 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Cell Transformation, Viral D002472 26 associated lipids
Hyperinsulinism D006946 27 associated lipids
Insulinoma D007340 28 associated lipids
Kidney Diseases D007674 29 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Uremia D014511 33 associated lipids
Micronuclei, Chromosome-Defective D048629 33 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Fushiki T et al. Changes in glucose transporters in muscle in response to exercise. 1989 Am. J. Physiol. pmid:2655468
Nishimura H et al. Postreceptor defect in insulin action in streptozotocin-induced diabetic rats. 1989 Am. J. Physiol. pmid:2655470
Cheeseman CI and Maenz DD Rapid regulation of D-glucose transport in basolateral membrane of rat jejunum. 1989 Am. J. Physiol. pmid:2655474
King PA et al. Glucose transport in skeletal muscle membrane vesicles from control and exercised rats. 1989 Am. J. Physiol. pmid:2610251
Morán J et al. Changes of actin cytoskeleton during swelling and regulatory volume decrease in cultured astrocytes. 1996 Am. J. Physiol. pmid:8997191
Foley JE et al. Glucose transport in isolated rat adipocytes with measurements of L-arabinose uptake. 1978 Am. J. Physiol. pmid:623288
Bleakman D and Naftalin RJ Hypertonic fluid absorption from rabbit descending colon in vitro. 1990 Am. J. Physiol. pmid:2107755
Renfro JL and Shustock E Peritubular uptake and brush border transport of 28Mg by flounder renal tubules. 1985 Am. J. Physiol. pmid:2413774
Zhang J et al. F-actin modulates swelling-activated chloride current in cultured chick cardiac myocytes. 1997 Am. J. Physiol. pmid:9357765
Ohnishi S et al. Delayed shortening and shrinkage of cochlear outer hair cells. 1992 Am. J. Physiol. pmid:1443102
Johnson LW and Smith CH Monosaccharide transport across microvillous membrane of human placenta. 1980 Am. J. Physiol. pmid:6990781
Grisham MB et al. Endotoxemia and neutrophil activation in vivo. 1988 Am. J. Physiol. pmid:2834968
Goodyear LJ et al. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. 1991 Am. J. Physiol. pmid:1951679
Pearl M and Taylor A Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. 1983 Am. J. Physiol. pmid:6307056
Kasbekar DK and Gordon GS Effects of colchicine and vinblastine on in vitro gastric secretion. 1979 Am. J. Physiol. pmid:312607
Goodyear LJ et al. Exercise-induced translocation of skeletal muscle glucose transporters. 1991 Am. J. Physiol. pmid:1662910
Schapiro FB et al. pH-independent retrograde targeting of glycolipids to the Golgi complex. 1998 Am. J. Physiol. pmid:9486120
Fushiki T et al. Decrease in muscle glucose transporter number in chronic physical inactivity in rats. 1991 Am. J. Physiol. pmid:1672241
Sternlicht E et al. Mechanism of insulin action on glucose transport in rat skeletal muscle. 1988 Am. J. Physiol. pmid:3284385
Peralta Soler A et al. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. 1996 Am. J. Physiol. pmid:8928850
Hamilton JR et al. Degranulation enhances release of a stable contractile factor from rabbit polymorphonuclear leukocytes. 1998 Am. J. Physiol. pmid:9612362
Marette A et al. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. 1992 Am. J. Physiol. pmid:1514590
Henquin JC and Lambert AE Bicarbonate modulation of glucose-9nduced biphasic insulin release by rat islets. 1976 Am. J. Physiol. pmid:788525
Abbott RE et al. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism. 1986 Am. J. Physiol. pmid:3717328
Karnieli E et al. Discrepancy between glucose transport and transporters in human femoral adipocytes. 1989 Am. J. Physiol. pmid:2643341
Wan X et al. Activation of mechanosensitive currents in traumatized membrane. 1999 Am. J. Physiol. pmid:9950759
Ladrière L et al. Assessment of islet beta-cell mass in isolated rat pancreases perfused with D-[(3)H]mannoheptulose. 2001 Am. J. Physiol. Endocrinol. Metab. pmid:11440906
Hosokawa M and Thorens B Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11882499
Moulin F et al. Hepatic and extrahepatic factors critical for liver injury during lipopolysaccharide exposure. 2001 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:11705747
Ma TY et al. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. 2000 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:11052983
Li Q et al. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. 2004 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:15033637
Ramasamy R et al. Protection of ischemic hearts by high glucose is mediated, in part, by GLUT-4. 2001 Am. J. Physiol. Heart Circ. Physiol. pmid:11406496
Boer C et al. Smooth muscle F-actin disassembly and RhoA/Rho-kinase signaling during endotoxin-induced alterations in pulmonary arterial compliance. 2004 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:14514519
Cammisotto PG and Bukowiecki LJ Role of calcium in the secretion of leptin from white adipocytes. 2004 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:15331383
Polakof S et al. In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. 2007 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:17567722
Ebner HL et al. Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes. 2005 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:15905223
Tseng YC et al. Functional analysis of the glucose transporters-1a, [corrected] -6, and -13.1 expressed by zebrafish epithelial cells. 2011 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:21123760
Casartelli M et al. A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). 2008 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:18635456
Miyata Y et al. P-gp-induced modulation of regulatory volume increase occurs via PKC in mouse proximal tubule. 2002 Am. J. Physiol. Renal Physiol. pmid:11739114
Takami M et al. Mac-1-dependent tyrosine phosphorylation during neutrophil adhesion. 2001 Am. J. Physiol., Cell Physiol. pmid:11287316
Sage JM et al. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. 2015 Am. J. Physiol., Cell Physiol. pmid:25715702
Leitch JM and Carruthers A alpha- and beta-monosaccharide transport in human erythrocytes. 2009 Am. J. Physiol., Cell Physiol. pmid:18987250
Mitchell T et al. Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. 2008 Am. J. Physiol., Cell Physiol. pmid:18799653
Pérez A et al. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. 2009 Am. J. Physiol., Cell Physiol. pmid:19386788
Ojeda P et al. Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site. 2012 Am. J. Physiol., Cell Physiol. pmid:22673619
Yu XY et al. Physiologic modulation of bronchial epithelial cell barrier function by polycationic exposure. 1994 Am. J. Respir. Cell Mol. Biol. pmid:8049079
Neeley SP et al. Augmentation of stimulated eosinophil degranulation by VLA-4 (CD49d)-mediated adhesion to fibronectin. 1994 Am. J. Respir. Cell Mol. Biol. pmid:8049081
Baldys A and Aust AE Role of iron in inactivation of epidermal growth factor receptor after asbestos treatment of human lung and pleural target cells. 2005 Am. J. Respir. Cell Mol. Biol. pmid:15626777
Choe N et al. Asbestos fibers and interleukin-1 upregulate the formation of reactive nitrogen species in rat pleural mesothelial cells. 1998 Am. J. Respir. Cell Mol. Biol. pmid:9698594
Du L et al. Actin filament reorganization is a key step in lung inflammation induced by systemic inflammatory response syndrome. 2012 Am. J. Respir. Cell Mol. Biol. pmid:22721831