CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Kidney Diseases D007674 29 associated lipids
Leukemia D007938 74 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia, Lymphoid D007945 18 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Lung Neoplasms D008175 171 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lymphoma D008223 18 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Hosomura N et al. HCV-related proteins activate Kupffer cells isolated from human liver tissues. 2011 Dig. Dis. Sci. pmid:20848204
Wang XL et al. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement. 2011 Plant Cell Environ. pmid:21443604
Chan HH et al. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. 2011 J. Nat. Prod. pmid:21417387
Robichaud T et al. Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site. 2011 Biochemistry pmid:21384913
SerebrianyÄ­ AM et al. [Distribution of individuals by spontaneous frequencies of lymphocytes with micronuclei. Particularity and consequences]. 2011 Tsitologiia pmid:21473112
Sun SC et al. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. 2011 PLoS ONE pmid:21494665
Porter-Turner MM et al. Relationship between erythrocyte GLUT1 function and membrane glycation in type 2 diabetes. 2011 Br. J. Biomed. Sci. pmid:22263435
Sánchez-Chávez G et al. Insulin stimulated-glucose transporter Glut 4 is expressed in the retina. 2012 PLoS ONE pmid:23285235
Tomioka S Water transport by glucose transporter type 3 expressed in Xenopus oocytes. 2012 Neuroreport pmid:22113212
Hiroshima Y et al. Resistin in gingival crevicular fluid and induction of resistin release by Porphyromonas gingivalis lipopolysaccharide in human neutrophils. 2012 J. Periodont. Res. pmid:22309231