CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
CREST Syndrome D017675 2 associated lipids
Factor XII Deficiency D005175 2 associated lipids
Erythroblastosis, Fetal D004899 2 associated lipids
Wiskott-Aldrich Syndrome D014923 3 associated lipids
Coronavirus Infections D018352 4 associated lipids
Chancroid D002602 4 associated lipids
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Granulomatous Disease, Chronic D006105 4 associated lipids
Pharyngeal Neoplasms D010610 4 associated lipids
Pituitary Neoplasms D010911 4 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Beebe LF et al. Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos. 2009 Cloning Stem Cells pmid:19780698
Xu BZ et al. Involvement of calcium/calmodulin-dependent protein kinase kinase in meiotic maturation of pig oocytes. 2009 Anim. Reprod. Sci. pmid:18367350
Mun GC et al. Further development of the EpiDerm 3D reconstructed human skin micronucleus (RSMN) assay. 2009 Mutat. Res. pmid:19167515
Medjkane S et al. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. 2009 Nat. Cell Biol. pmid:19198601
Sáenz JB et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. 2009 Nat. Chem. Biol. pmid:19182783
Zhou GB and Li N Cryopreservation of porcine oocytes: recent advances. 2009 Mol. Hum. Reprod. pmid:19251762
Karabasil MR et al. Trafficking of GFP-AQP5 chimeric proteins conferred with unphosphorylated amino acids at their PKA-target motif ((152)SRRTS) in MDCK-II cells. 2009 J. Med. Invest. pmid:19262015
Chen Q et al. Cytoskeleton disorganization during apoptosis induced by curcumin in A549 lung adenocarcinoma cells. 2009 Planta Med. pmid:19266427
Leitch JM and Carruthers A alpha- and beta-monosaccharide transport in human erythrocytes. 2009 Am. J. Physiol., Cell Physiol. pmid:18987250
Wang L et al. Changes in the reciprocal position of the first polar body and oocyte chromosome set in golden hamsters. 2009 Biosci. Rep. pmid:18980577
Scarfì S et al. Ascorbic acid pre-treated quartz stimulates TNF-alpha release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation. 2009 Respir. Res. pmid:19298665
Vu DM et al. CD133+ endothelial progenitor cells as a potential cell source for a bioartificial glomerulus. 2009 Tissue Eng Part A pmid:19358628
Izumi Y and Zorumski CF Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. 2009 Neuroscience pmid:19362122
Apostolakos P et al. Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. 2009 Cell Motil. Cytoskeleton pmid:19363785
Bukoreshtliev NV et al. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. 2009 FEBS Lett. pmid:19345217
Qu C et al. The role of the cytoskeleton in the formation of gap junctions by Connexin 30. 2009 Exp. Cell Res. pmid:19285977
Serda RE et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. 2009 Biomaterials pmid:19215978
Popova E et al. Efficient production of nuclear transferred rat embryos by modified methods of reconstruction. 2009 Mol. Reprod. Dev. pmid:18543283
Schratl P and Heinemann A Differential involvement of Ca2+ and actin filament in leukocyte shape change. 2009 Pharmacology pmid:19092285
Feng DQ et al. Effects of the conditioned medium of mesenchymal stem cells on mouse oocyte activation and development. 2009 Braz. J. Med. Biol. Res. pmid:19448898
Huang AX et al. Nitric oxide, actin reorganization and vacuoles change are involved in PEG 6000-induced stomatal closure in Vicia faba. 2009 Physiol Plant pmid:19508367
Nejmeddine M et al. HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. 2009 Blood pmid:19494354
Marra CA and de Alaniz MJ Microtubule depolymerization modifies the incorporation of fatty acids into glycerolipids. 2009 Med. Sci. Monit. pmid:19478693
Manjunatha BM et al. Post-thaw development of in vitro produced buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. 2009 J. Vet. Sci. pmid:19461211
Root-Bernstein R and Vonck J Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. 2009 Cell. Mol. Life Sci. pmid:19554259
Huang YC et al. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica. 2009 J. Nat. Prod. pmid:19583252
Rodríguez-Enríquez S et al. Kinetics of transport and phosphorylation of glucose in cancer cells. 2009 J. Cell. Physiol. pmid:19681047
Egli D et al. Reprogramming after chromosome transfer into mouse blastomeres. 2009 Curr. Biol. pmid:19682906
Chang LY et al. Inhibitory effects of safrole on phagocytosis, intracellular reactive oxygen species, and the activity of myeloperoxidase released by human polymorphonuclear leukocytes. 2009 J. Periodontol. pmid:19656034
Gusakova SV et al. [Research of cytoskeleton-dependent mechanisms of contractile activity regulation in the smooth muscles]. 2009 Ross Fiziol Zh Im I M Sechenova pmid:19639882
Nakano T et al. Localization of diacylglycerol kinase epsilon on stress fibers in vascular smooth muscle cells. 2009 Cell Tissue Res. pmid:19421779
Arsoy NS et al. Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage. 2009 Mutagenesis pmid:19423564
Pérez A et al. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. 2009 Am. J. Physiol., Cell Physiol. pmid:19386788
Barros LF et al. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. 2009 J. Neurochem. pmid:19393014
Franck T et al. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase. 2009 Vet. Immunol. Immunopathol. pmid:19328559
Liu X et al. Stretch-activated potassium channels in hypotonically induced blebs of atrial myocytes. 2008 Nov-Dec J. Membr. Biol. pmid:19015804
Fellows MD et al. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. II: Practical aspects with toxic agents. 2008 Aug-Sep Mutat. Res. pmid:18602493
Lorge E et al. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. 2008 Aug-Sep Mutat. Res. pmid:18602494
Gibbs ME et al. Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis. 2008 Neuropsychopharmacology pmid:18046311
John SA et al. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. 2008 Pflugers Arch. pmid:18071748
Pinto V et al. Oxidative stress and the genomic regulation of aldosterone-stimulated NHE1 activity in SHR renal proximal tubular cells. 2008 Mol. Cell. Biochem. pmid:18095144
Giambelluca MS and Gende OA Hydrogen peroxide activates calcium influx in human neutrophils. 2008 Mol. Cell. Biochem. pmid:18008137
Kole MH et al. Action potential generation requires a high sodium channel density in the axon initial segment. 2008 Nat. Neurosci. pmid:18204443
Koltsova SV et al. Vascular smooth muscle contraction evoked by cell volume modulation: role of the cytoskeleton network. 2008 Cell. Physiol. Biochem. pmid:18209469
Chen JJ et al. Neolignans, a coumarinolignan, lignan derivatives, and a chromene: anti-inflammatory constituents from Zanthoxylum avicennae. 2008 J. Nat. Prod. pmid:18211005
Chen DC et al. Eugenol inhibited the antimicrobial functions of neutrophils. 2008 J Endod pmid:18215676
Corrêa JR et al. Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin-dependent endocytosis. 2008 Exp. Parasitol. pmid:18234197
Bandyopadhyay S et al. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. 2008 Mol. Cell. Endocrinol. pmid:18346843
Terracciano S et al. Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting Jaspamide. 2008 Bioorg. Med. Chem. pmid:18508272
Ock SA and Rho GJ Parthenogenetic development and ploidy following various chemical activation regiments of bovine oocytes. 2008 J. Vet. Med. Sci. pmid:19057133