CYTOCHALASIN B

CYTOCHALASIN B is a lipid of Polyketides (PK) class. Cytochalasin b is associated with abnormalities such as Renal tubular disorder and Chagas Disease. The involved functions are known as Membrane Protein Traffic, inhibitors, Metabolic Inhibition, Biochemical Pathway and Increased Sensitivy. Cytochalasin b often locates in Cytoplasmic matrix, Plasma membrane, Microtubules, Extracellular and Protoplasm. The associated genes with CYTOCHALASIN B are SLC2A2 gene, PFDN5 gene, SLC2A1 gene, OMG gene and SPEN gene. The related lipids are Steroids, Lipopolysaccharides and Liposomes. The related experimental models are Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of CYTOCHALASIN B, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with CYTOCHALASIN B?

CYTOCHALASIN B is suspected in Renal tubular disorder, Chagas Disease and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with CYTOCHALASIN B

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Uremia D014511 33 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Foreign-Body Reaction D005549 10 associated lipids
Per page 10 20 50 100 | Total 79

PubChem Associated disorders and diseases

What pathways are associated with CYTOCHALASIN B

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with CYTOCHALASIN B?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with CYTOCHALASIN B?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with CYTOCHALASIN B?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with CYTOCHALASIN B?

Xenograft Model

Xenograft Model are used in the study 'Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.' (Pérez A et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with CYTOCHALASIN B

Download all related citations
Per page 10 20 50 100 | Total 4982
Authors Title Published Journal PubMed Link
Krupka RM and Devés R Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes. 1986 Biochem. Cell Biol. pmid:2435306
Pomorski P et al. Reversible changes in size of cell nuclei isolated from Amoeba proteus: role of the cytoskeleton. 2000 Biochem. Cell Biol. pmid:11012088
Craik JD et al. Identification of glucose and nucleoside transport proteins in neonatal pig erythrocytes using monoclonal antibodies against band 4.5 polypeptides of adult human and pig erythrocytes. 1988 Biochem. Cell Biol. pmid:3143374
Burdett E and Klip A Exofacial regions of the glucose transporter of human erythrocytes: detection with polyclonal antibodies. 1988 Biochem. Cell Biol. pmid:3214568
Klip A et al. Chemical and genetic comparison of the glucose and nucleoside transporters. 1986 Biochem. Cell Biol. pmid:3828109
Ranjan R et al. Effect of actin polymerization inhibitor during oocyte maturation on parthenogenetic embryo development and ploidy in Capra hircus. 2013 Biochem. Genet. pmid:23846112
Garcia-Mateu S et al. Binding of [3H]cytochalasin B to tumoral islet cells. 1990 Biochem. Int. pmid:2167090
Uezato T Photoaffinity labeling of the K562 cell membrane D-glucose transporter with cytochalasin B. 1986 Biochem. Int. pmid:3457566
Albert SG Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. 1984 Biochem. Int. pmid:6541046
Fukai F et al. Fibronectin stimulates protein synthesis in cultured fibroblastic cells. 1992 Biochem. Int. pmid:1417873
Morita K et al. Effects of cytoskeleton-disrupting agents on tyrosine transport into cultured bovine adrenal chromaffin cells. 1989 Biochem. Int. pmid:2783150
Chen SR and Lo TC Genetic evidence indicating the identity of the cytochalasin B photolabelled components in rat myoblasts. 1990 Biochem. Int. pmid:2353924
Cope DL et al. Domain assembly of the GLUT1 glucose transporter. 1994 Biochem. J. pmid:8002929
Maher F and Simpson IA The GLUT3 glucose transporter is the predominant isoform in primary cultured neurons: assessment by biosynthetic and photoaffinity labelling. 1994 Biochem. J. pmid:8042980
Olefsky JM Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes. 1978 Biochem. J. pmid:656068
Doege H et al. Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. 2001 Biochem. J. pmid:11583593
Janmohamed NS et al. Proteolytic cleavage of [3H]nitrobenzylthioinosine-labelled nucleoside transporter in human erythrocytes. 1985 Biochem. J. pmid:4062878
Rubin RP et al. Activation of (arachidonyl) phosphatidylinositol turnover in rabbit neutrophils by the calcium ionophore A23187. 1981 Biochem. J. pmid:6796062
Koumanov F et al. Cell-surface biotinylation of GLUT4 using bis-mannose photolabels. 1998 Biochem. J. pmid:9494087
Sorbara LR et al. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets. 1997 Biochem. J. pmid:9371709
Yano Y and May JM Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter. 1993 Biochem. J. pmid:8216214
Martin GE et al. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GalP, of Escherichia coli. 1995 Biochem. J. pmid:7755573
McDonald TP and Henderson PJ Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. 2001 Biochem. J. pmid:11171069
Mesmer OT et al. Use of a genetic variant to study the hexose transport properties of human skin fibroblasts. 1990 Biochem. J. pmid:2306216
Threadgold LC et al. Monosaccharide transport into lactating-rat mammary acini. 1982 Biochem. J. pmid:6214256
Welch RW et al. Ascorbic acid accumulation and transport in human fibroblasts. 1993 Biochem. J. pmid:8373364
Segal J The effect of trypsin on sugar uptake in rat thymocytes. Modulation of cellular cyclic AMP concentration and the sugar-transport system. 1987 Biochem. J. pmid:2825642
Colville CA et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. 1993 Biochem. J. pmid:8457197
Vissers MC and Winterbourn CC Activation of human neutrophil gelatinase by endogenous serine proteinases. 1988 Biochem. J. pmid:2829854
Hallett MB and Campbell AK Uptake of liposomes containing the photoprotein obelin by rat isolated adipocytes. Adhesion, endocytosis or fusion? 1980 Biochem. J. pmid:7236227
Biden TJ and Wollheim CB Active transport of myo-inositol in rat pancreatic islets. 1986 Biochem. J. pmid:3539107
Davies P et al. Selective release of lysosomal hydrolases from phagocytic cells by cytochalasin B. 1973 Biochem. J. pmid:4737379
Muiry JA et al. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae. 1993 Biochem. J. pmid:8384447
Petrie L et al. Inhibition of myoblast differentiation by lack of zinc. 1991 Biochem. J. pmid:2039464
Trautmann ME and Wollheim CB Characterization of glucose transport in an insulin-secreting cell line. 1987 Biochem. J. pmid:3036095
Afzal I et al. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. 2002 Biochem. J. pmid:12133004
Yi CK et al. Characterization of functional human erythrocyte-type glucose transporter (GLUT1) expressed in insect cells using a recombinant baculovirus. 1992 Biochem. J. pmid:1590751
Davies A et al. Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter. 1990 Biochem. J. pmid:1691633
Mesmer OT and Lo TC Hexose transport in human myoblasts. 1989 Biochem. J. pmid:2818559
Joost HG et al. Qualitative and quantitative comparison of glucose transport activity and glucose transporter concentration in plasma membranes from basal and insulin-stimulated rat adipose cells. 1988 Biochem. J. pmid:3277616
Mühlbacher C et al. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. 1988 Biochem. J. pmid:3281656
Gélas P et al. Human neutrophil phospholipase D activation by N-formylmethionyl-leucylphenylalanine reveals a two-step process for the control of phosphatidylcholine breakdown and oxidative burst. 1992 Biochem. J. pmid:1417792
Madon RJ et al. Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. 1990 Biochem. J. pmid:2264840
Halperin ML and Cheema-Dhadli S Comparison of glucose and fructose transport into adipocytes of the rat. 1982 Biochem. J. pmid:7046737
Jonas AJ et al. Neutral-sugar transport by rat liver lysosomes. 1990 Biochem. J. pmid:2268262
Van der Wijk T et al. Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. 1999 Biochem. J. pmid:10527936
Rist RJ and Naftalin RJ Dexamethasone inhibits the hexose monophosphate shunt in activated rat peritoneal macrophages by reducing hexokinase-dependent sugar uptake. 1991 Biochem. J. pmid:1883324
Savini I et al. Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. 2000 Biochem. J. pmid:10642526
Chen SR and Lo TC Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts. 1988 Biochem. J. pmid:3390161
Goebeler M et al. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. 1995 Biochem. J. pmid:7542868