Chrysanthemin

Chrysanthemin is a lipid of Polyketides (PK) class. Chrysanthemin is associated with abnormalities such as Dehydration, Endothelial dysfunction, Cardiovascular Diseases, Obesity and Hyperglycemia. The involved functions are known as inhibitors, Process, Pigment, Inflammation and Transcription, Genetic. Chrysanthemin often locates in Membrane, Back, Vacuole, vacuolar membrane and vacuolar lumen. The related lipids are Butanols.

Cross Reference

Introduction

To understand associated biological information of Chrysanthemin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Chrysanthemin?

Chrysanthemin is suspected in Cardiovascular Diseases, Obesity, Dehydration, Endothelial dysfunction, Hyperglycemia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

No disease MeSH terms mapped to the current reference collection.

PubChem Associated disorders and diseases

What pathways are associated with Chrysanthemin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Chrysanthemin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Chrysanthemin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Chrysanthemin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Chrysanthemin

Download all related citations
Per page 10 20 50 100 | Total 351
Authors Title Published Journal PubMed Link
Dantas AM et al. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. 2019 Food Chem pmid:30372928
Sun J et al. Effects of low power ultrasonic treatment on the transformation of cyanidin-3-O-glucoside to methylpyranocyanidin-3-O-glucoside and its stability evaluation. 2019 Food Chem pmid:30409590
Laczkó-Zöld E et al. Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. 2018 Acta. Biol. Hung. pmid:29888668
Henarejos-Escudero P et al. Digestive glands extraction and precise pigment analysis support the exclusion of the carnivorous plant Dionaea muscipula Ellis from the Caryophyllales order. 2018 Plant Sci. pmid:30080622
López-Angulo G et al. Anthocyanins of Pithecellobium dulce (Roxb.) Benth. Fruit Associated with High Antioxidant and α-Glucosidase Inhibitory Activities. 2018 Plant Foods Hum Nutr pmid:30238426
Zou H et al. Isolation of strawberry anthocyanins using high-speed counter-current chromatography and the copigmentation with catechin or epicatechin by high pressure processing. 2018 Food Chem pmid:29277232
Nakagawa K et al. EPR and HPLC Investigation of Pigments in Thai Purple Rice. 2018 J Oleo Sci pmid:30305563
Strugała P et al. A Comprehensive Study on the Biological Activity of Elderberry Extract and Cyanidin 3--Glucoside and Their Interactions with Membranes and Human Serum Albumin. 2018 Molecules pmid:30297646
Zha J et al. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. 2018 Microb. Cell Fact. pmid:30217197
Guimarães M et al. Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation. 2018 J. Agric. Food Chem. pmid:30187750
Grimes KL et al. Enhancing the Cancer Cell Growth Inhibitory Effects of Table Grape Anthocyanins. 2018 J. Food Sci. pmid:30070707
McCarty MF and Assanga SBI Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. 2018 Med. Hypotheses pmid:30037596
de Oliveira Ribeiro L et al. Effect of Processing on Bioactive Compounds, Physicochemical and Rheological Characteristics of Juçara, Banana and Strawberry Smoothie. 2018 Plant Foods Hum Nutr pmid:29982884
Prasanna G and Jing P Spectroscopic and molecular modelling studies on glycation modified bovine serum albumin with cyanidin-3-O-glucoside. 2018 Spectrochim Acta A Mol Biomol Spectrosc pmid:29982163
Casanova F et al. pH- and ionic strength-dependent interaction between cyanidin-3-O-glucoside and sodium caseinate. 2018 Food Chem pmid:29934189
Ryu D and Koh E Stability of anthocyanins in bokbunja (Rubus occidentalis L.) under in vitro gastrointestinal digestion. 2018 Food Chem pmid:29934151
Pei L et al. Cyanidin-3-O-β-glucoside regulates the activation and the secretion of adipokines from brown adipose tissue and alleviates diet induced fatty liver. 2018 Biomed. Pharmacother. pmid:29898429
Aloud BM et al. Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. 2018 Food Funct pmid:29878020
Qin Y et al. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. 2018 Biomed. Pharmacother. pmid:29864902
Jin X et al. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells. 2018 J Immunol Res pmid:29854843
López CJ et al. Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. 2018 Food Chem pmid:29853408
Gomez MK et al. Identification and Quantification of Phytochemicals, Antioxidant Activity, and Bile Acid-Binding Capacity of Garnet Stem Dandelion (Taraxacum officinale). 2018 J. Food Sci. pmid:29802721
Zhou L et al. Anti-tumor properties of anthocyanins from Lonicera caerulea 'Beilei' fruit on human hepatocellular carcinoma: In vitro and in vivo study. 2018 Biomed. Pharmacother. pmid:29800916
Liu Z et al. Nanoencapsulation of Cyanidin-3- O-glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of p53-Mediated Apoptosis in Mice. 2018 J. Agric. Food Chem. pmid:29732888
Sun J et al. Protection of cyanidin-3-O-glucoside against acrylamide- and glycidamide-induced reproductive toxicity in leydig cells. 2018 Food Chem. Toxicol. pmid:29574012
Wei J et al. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. 2018 Int. J. Mol. Med. pmid:29328429
Kim SH et al. Regulatory Effects of Black Rice Extract on Helicobacter pylori Infection-Induced Apoptosis. 2018 Mol Nutr Food Res pmid:29035012
Krishnan V et al. Enhanced nutraceutical potential of gamma irradiated black soybean extracts. 2018 Food Chem pmid:29287367
Wen L et al. Cyanidin-3-O-glucoside promotes the biosynthesis of progesterone through the protection of mitochondrial function in Pb-exposed rat leydig cells. 2018 Food Chem. Toxicol. pmid:29030260
Mazewski C et al. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. 2018 Food Chem pmid:29037704
Yang C et al. An LC-MS/MS method for quantitation of cyanidin-3-O-glucoside in rat plasma: Application to a comparative pharmacokinetic study in normal and streptozotocin-induced diabetic rats. 2018 Biomed. Chromatogr. pmid:28682490
He Y et al. Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr. 2018 Nat. Prod. Res. pmid:28480755
Fedenko VS et al. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. 2017 J. Plant Physiol. pmid:28242414
Di Nunzio M et al. Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives? 2017 BMC Complement Altern Med pmid:28882181
Jana S et al. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. 2017 PLoS ONE pmid:28763488
Nakagawa K and Maeda H Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR. 2017 J Oleo Sci pmid:28458389
Qian BJ et al. Effect of complexes of cyanidin-3-diglucoside-5-glucoside with rutin and metal ions on their antioxidant activities. 2017 Food Chem pmid:28490109
Wang Y et al. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. 2017 Exp. Eye Res. pmid:28461203
Petroni K et al. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. 2017 Nutr Metab Cardiovasc Dis pmid:28428026
Zhou M et al. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system. 2017 Food Chem pmid:28372217
Cho E et al. Anti-cancer Effect of Cyanidin-3-glucoside from Mulberry via Caspase-3 Cleavage and DNA Fragmentation in vitro and in vivo. 2017 Anticancer Agents Med Chem pmid:28356020
Nakagawa K and Maeda H EPR imaging and HPLC characterization of the pigment-based organic free radical in black soybean seeds. 2017 Free Radic. Res. pmid:28166645
Fratantonio D et al. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors. 2017 Biochim. Biophys. Acta pmid:28011403
Matsukawa T et al. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. 2017 J. Nutr. Biochem. pmid:27865158
Horniblow RD et al. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. 2017 Mol Nutr Food Res pmid:27794191
Teerakapong A et al. Efficacy of erythrosine and cyanidin-3-glucoside mediated photodynamic therapy on Porphyromonas gingivalis biofilms using green light laser. 2017 Photodiagnosis Photodyn Ther pmid:28887223
Garzón GA et al. Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. 2017 Food Chem pmid:27664647
Matsukawa T et al. Upregulation of skeletal muscle PGC-1α through the elevation of cyclic AMP levels by Cyanidin-3-glucoside enhances exercise performance. 2017 Sci Rep pmid:28317895
You Y et al. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. 2017 Mol Nutr Food Res pmid:28691397
Warner EF et al. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. 2017 Mol Nutr Food Res pmid:28457017