Chrysanthemin

Chrysanthemin is a lipid of Polyketides (PK) class. Chrysanthemin is associated with abnormalities such as Dehydration, Endothelial dysfunction, Cardiovascular Diseases, Obesity and Hyperglycemia. The involved functions are known as inhibitors, Process, Pigment, Inflammation and Transcription, Genetic. Chrysanthemin often locates in Membrane, Back, Vacuole, vacuolar membrane and vacuolar lumen. The related lipids are Butanols.

Cross Reference

Introduction

To understand associated biological information of Chrysanthemin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Chrysanthemin?

Chrysanthemin is suspected in Cardiovascular Diseases, Obesity, Dehydration, Endothelial dysfunction, Hyperglycemia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

No disease MeSH terms mapped to the current reference collection.

PubChem Associated disorders and diseases

What pathways are associated with Chrysanthemin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Chrysanthemin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Chrysanthemin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Chrysanthemin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Chrysanthemin

Download all related citations
Per page 10 20 50 100 | Total 351
Authors Title Published Journal PubMed Link
He Y et al. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. 2017 J. Photochem. Photobiol. B, Biol. pmid:29031211
Li C et al. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. 2017 J. Endocrinol. pmid:28931557
Hosseini MM et al. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. 2017 World Neurosurg pmid:28867321
Yao Y et al. Plant-based Food Cyanidin-3-Glucoside Modulates Human Platelet Glycoprotein VI Signaling and Inhibits Platelet Activation and Thrombus Formation. 2017 J. Nutr. pmid:28855423
Woo H et al. Protective Effect of Mulberry (Morus alba L.) Extract against Benzo[a]pyrene Induced Skin Damage through Inhibition of Aryl Hydrocarbon Receptor Signaling. 2017 J. Agric. Food Chem. pmid:29231728
Del Bo' C et al. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. 2016 Eur J Nutr pmid:25595100
Nankar AN et al. Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. 2016 J. Sci. Food Agric. pmid:26879128
Serra D et al. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: Comparison with 5-aminosalicylic acid. 2016 Chem. Biol. Interact. pmid:27818126
Zheng YC et al. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress. 2016 J. Agric. Food Chem. pmid:27802600
Silván JM et al. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. 2016 Food Funct pmid:26781209
Cunja V et al. Fresh from the Ornamental Garden: Hips of Selected Rose Cultivars Rich in Phytonutrients. 2016 J. Food Sci. pmid:26773854
Yu Y et al. Effect of High Pressure Homogenization and Dimethyl Dicarbonate (DMDC) on Microbial and Physicochemical Qualities of Mulberry Juice. 2016 J. Food Sci. pmid:26764561
Hashimoto N et al. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. 2016 J Med Food pmid:26692239
Rustioni L et al. Pink berry grape (Vitis vinifera L.) characterization: Reflectance spectroscopy, HPLC and molecular markers. 2016 Plant Physiol. Biochem. pmid:26687319
Tang L et al. Interaction of cyanidin-3-O-glucoside with three proteins. 2016 Food Chem pmid:26593527
Lin Z et al. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. 2016 Food Chem pmid:26471644
Celli GB et al. Refractance Windowâ„¢ drying of haskap berry--preliminary results on anthocyanin retention and physicochemical properties. 2016 Food Chem pmid:26471547
Jiang Z et al. Anthocyanins attenuate alcohol-induced hepatic injury by inhibiting pro-inflammation signalling. 2016 Nat. Prod. Res. pmid:25774691
Wang L et al. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. 2016 Oncotarget pmid:27655695
Wang L et al. Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata (Linn.) Borkh. 2016 Food Funct pmid:26741951