Chrysanthemin

Chrysanthemin is a lipid of Polyketides (PK) class. Chrysanthemin is associated with abnormalities such as Dehydration, Endothelial dysfunction, Cardiovascular Diseases, Obesity and Hyperglycemia. The involved functions are known as inhibitors, Process, Pigment, Inflammation and Transcription, Genetic. Chrysanthemin often locates in Membrane, Back, Vacuole, vacuolar membrane and vacuolar lumen. The related lipids are Butanols.

Cross Reference

Introduction

To understand associated biological information of Chrysanthemin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Chrysanthemin?

Chrysanthemin is suspected in Cardiovascular Diseases, Obesity, Dehydration, Endothelial dysfunction, Hyperglycemia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

No disease MeSH terms mapped to the current reference collection.

PubChem Associated disorders and diseases

What pathways are associated with Chrysanthemin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Chrysanthemin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Chrysanthemin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Chrysanthemin?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Chrysanthemin?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Chrysanthemin

Download all related citations
Per page 10 20 50 100 | Total 351
Authors Title Published Journal PubMed Link
Lacombe A et al. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. 2010 Int. J. Food Microbiol. pmid:20153540
Wei J et al. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. 2018 Int. J. Mol. Med. pmid:29328429
Lee JS et al. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. 2015 Int. J. Mol. Med. pmid:25435295
Milbury PE et al. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. 2007 Invest. Ophthalmol. Vis. Sci. pmid:17460300
Krüger S et al. Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography. 2015 J Chromatogr A pmid:26643726
Stoner GD et al. Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. 2005 J Clin Pharmacol pmid:16172180
Jin X et al. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells. 2018 J Immunol Res pmid:29854843
Desjardins J et al. Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. 2012 J Med Food pmid:22738124
Hashimoto N et al. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. 2016 J Med Food pmid:26692239
Sun CD et al. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. 2012 J Med Food pmid:22181073
Kaume L et al. Cyanidin 3-O-β-D-Glucoside Improves Bone Indices. 2015 J Med Food pmid:25386839
Fukami H et al. Isolation of a reduced form of cyanidin 3-O-β-D-glucoside from immature black soybean (Glycine max (L.) Merr.) and its reducing properties. 2013 J Oleo Sci pmid:23985492
Nakagawa K and Maeda H Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR. 2017 J Oleo Sci pmid:28458389
Nakagawa K et al. EPR and HPLC Investigation of Pigments in Thai Purple Rice. 2018 J Oleo Sci pmid:30305563
Cruz L et al. Characterization of kinetic and thermodynamic parameters of cyanidin-3-glucoside methyl and glucuronyl metabolite conjugates. 2015 J Phys Chem B pmid:25622073
Giordano L et al. Development and validation of an LC-MS/MS analysis for simultaneous determination of delphinidin-3-glucoside, cyanidin-3-glucoside and cyanidin-3-(6-malonylglucoside) in human plasma and urine after blood orange juice administration. 2007 J Sep Sci pmid:18027360
Choi SJ et al. Rapid separation of cyanidin-3-glucoside and cyanidin-3-rutinoside from crude mulberry extract using high-performance countercurrent chromatography and establishment of a volumetric scale-up process. 2015 J Sep Sci pmid:25800228
Yousef GG et al. Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries ( Vaccinium spp.). 2013 J. Agric. Food Chem. pmid:23635035
Liu Z et al. Nanoencapsulation of Cyanidin-3- O-glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of p53-Mediated Apoptosis in Mice. 2018 J. Agric. Food Chem. pmid:29732888
Zheng YC et al. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress. 2016 J. Agric. Food Chem. pmid:27802600