(+)-Catechin 3-Gallate

(+)-Catechin 3-Gallate is a lipid of Polyketides (PK) class. (+)-catechin 3-gallate is associated with abnormalities such as Epilepsy and Megalencephaly. The involved functions are known as Docking, Drug Interactions, inhibitors, Oxidation and Inflammation Process. (+)-catechin 3-gallate often locates in Solitary microtubule component of centriole or axonemal complex, Palmar surface, Glial and peritoneal. The associated genes with (+)-Catechin 3-Gallate are Homologous Gene and TSC1 gene.

Cross Reference

Introduction

To understand associated biological information of (+)-Catechin 3-Gallate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with (+)-Catechin 3-Gallate?

(+)-Catechin 3-Gallate is suspected in Epilepsy, Megalencephaly and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (+)-Catechin 3-Gallate

MeSH term MeSH ID Detail
Cicatrix D002921 9 associated lipids
Total 1

PubChem Associated disorders and diseases

What pathways are associated with (+)-Catechin 3-Gallate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with (+)-Catechin 3-Gallate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with (+)-Catechin 3-Gallate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with (+)-Catechin 3-Gallate?

There are no associated biomedical information in the current reference collection.

What genes are associated with (+)-Catechin 3-Gallate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with (+)-Catechin 3-Gallate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with (+)-Catechin 3-Gallate

Download all related citations
Per page 10 20 50 100 | Total 372
Authors Title Published Journal PubMed Link
Shin ES et al. Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme. 2008 Bioorg. Med. Chem. pmid:18313308
Ishizu T et al. Diastereomeric difference of inclusion modes between (-)-epicatechin gallate, (-)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent. 2008 Magn Reson Chem pmid:18318450
Fujimura Y et al. The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. 2008 Arch. Biochem. Biophys. pmid:18358230
Lin CL et al. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. 2007 J. Lipid Res. pmid:17720960
Green RJ et al. Common tea formulations modulate in vitro digestive recovery of green tea catechins. 2007 Mol Nutr Food Res pmid:17688297
Saito ST et al. Characterization of the constituents and antioxidant activity of Brazilian green tea (Camellia sinensis var. assamica IAC-259 cultivar) extracts. 2007 J. Agric. Food Chem. pmid:17937477
Annabi B et al. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. 2007 Leuk. Res. pmid:17081606
Mirkov S et al. Effects of green tea compounds on irinotecan metabolism. 2007 Drug Metab. Dispos. pmid:17108060
Gradisar H et al. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. 2007 J. Med. Chem. pmid:17228868
You Y et al. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity. 2007 Molecules pmid:17851436
Sharma S et al. Mass spectrometry-based systems approach for identification of inhibitors of Plasmodium falciparum fatty acid synthase. 2007 Antimicrob. Agents Chemother. pmid:17485508
Jovel EM et al. Bioactivity-guided isolation of the active compounds from Rosa nutkana and quantitative analysis of ascorbic acid by HPLC. 2007 Can. J. Physiol. Pharmacol. pmid:18066132
Mata-Bilbao Mde L et al. A new LC/MS/MS rapid and sensitive method for the determination of green tea catechins and their metabolites in biological samples. 2007 J. Agric. Food Chem. pmid:17902624
Huang CC et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. 2007 Molecules pmid:17960092
Uekusa Y et al. Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy. 2007 J. Agric. Food Chem. pmid:17966973
Danila AM et al. Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum Moench by micro-high-performance liquid chromatography with electrochemical detection. 2007 J. Agric. Food Chem. pmid:17253718
Ryan P and Hynes MJ The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). 2007 J. Inorg. Biochem. pmid:17257683
Noda Y and Peterson DG Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems. 2007 J. Agric. Food Chem. pmid:17394338
Stapleton PD et al. The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. 2007 Microbiology (Reading, Engl.) pmid:17600054
Thephinlap C et al. Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. 2007 Med Chem pmid:17504202
Kyle JA et al. Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. 2007 J. Agric. Food Chem. pmid:17489604
Landis-Piwowar KR et al. Methylation suppresses the proteasome-inhibitory function of green tea polyphenols. 2007 J. Cell. Physiol. pmid:17477351
Cheng KW et al. Inhibitory activities of dietary phenolic compounds on heterocyclic amine formation in both chemical model system and beef patties. 2007 Mol Nutr Food Res pmid:17628877
Babich H et al. In vitro cytotoxicity of (-)-catechin gallate, a minor polyphenol in green tea. 2007 Toxicol. Lett. pmid:17606338
Kusano R et al. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation. 2007 Chem. Pharm. Bull. pmid:18057757
Nishimuta H et al. Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3. 2007 Biopharm Drug Dispos pmid:17876860
Cho KN et al. Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. 2007 Eur. J. Cancer pmid:17764926
Lo HM et al. Tea polyphenols inhibit rat vascular smooth muscle cell adhesion and migration on collagen and laminin via interference with cell-ECM interaction. 2007 J. Biomed. Sci. pmid:17436062
Haginaka J et al. Uniformly-sized, molecularly imprinted polymers for (-)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method. 2007 J Chromatogr A pmid:17070533
Neilson AP et al. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. 2007 J. Agric. Food Chem. pmid:17924707
Koo SI and Noh SK Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. 2007 J. Nutr. Biochem. pmid:17296491
Kotani A et al. Attomole catechins determination by capillary liquid chromatography with electrochemical detection. 2007 Anal Sci pmid:17297226
Nitta Y et al. Food components inhibiting recombinant human histidine decarboxylase activity. 2007 J. Agric. Food Chem. pmid:17227057
Sannella AR et al. Antimalarial properties of green tea. 2007 Biochem. Biophys. Res. Commun. pmid:17174271
Sharma SK et al. Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). 2007 J. Med. Chem. pmid:17263522
Fujisawa S et al. A quantitative approach to the free radical interaction between alpha-tocopherol or ascorbate and flavonoids. 2006 Jul-Aug In Vivo pmid:16900773
Stapleton PD et al. Potentiation of catechin gallate-mediated sensitization of Staphylococcus aureus to oxacillin by nongalloylated catechins. 2006 Antimicrob. Agents Chemother. pmid:16436737
Luximon-Ramma A et al. Assessment of the polyphenolic composition of the organic extracts of Mauritian black teas: a potential contributor to their antioxidant functions. 2006 Biofactors pmid:17012766
John KM et al. Electrofocusing of methanolic extracts for identification of individual flavonol biomolecules in Camellia species. 2006 J. Agric. Food Chem. pmid:16608196
Tasdemir D et al. Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. 2006 J. Med. Chem. pmid:16722653
Bastianetto S et al. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. 2006 Eur. J. Neurosci. pmid:16420415
Zhang R et al. Novel inhibitors of fatty-acid synthase from green tea (Camellia sinensis Xihu Longjing) with high activity and a new reacting site. 2006 Biotechnol. Appl. Biochem. pmid:15943584
Daniel KG et al. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit. 2006 Int. J. Mol. Med. pmid:16964415
Wang R et al. Kinetic study of the thermal stability of tea catechins in aqueous systems using a microwave reactor. 2006 J. Agric. Food Chem. pmid:16881696
Ghosh KS et al. Copper complexes of (-)-epicatechin gallate and (-)-epigallocatechin gallate act as inhibitors of Ribonuclease A. 2006 FEBS Lett. pmid:16884715
Stapleton PD et al. Epicatechin gallate, a component of green tea, reduces halotolerance in Staphylococcus aureus. 2006 Int. J. Food Microbiol. pmid:16839636
Galati G et al. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. 2006 Free Radic. Biol. Med. pmid:16458187
Bigelow RL and Cardelli JA The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. 2006 Oncogene pmid:16449979
Lim YC et al. Growth inhibition and apoptosis by (-)-epicatechin gallate are mediated by cyclin D1 suppression in head and neck squamous carcinoma cells. 2006 Eur. J. Cancer pmid:17045795
Hayes CJ et al. Synthesis and preliminary anticancer activity studies of C4 and C8-modified derivatives of catechin gallate (CG) and epicatechin gallate (ECG). 2006 J. Org. Chem. pmid:17168588
Shen D et al. Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. 2006 J. Agric. Food Chem. pmid:16637676
Si W et al. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. 2006 J Chromatogr A pmid:16797571
Goodin MG et al. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) in the mouse. 2006 Food Chem. Toxicol. pmid:16762473
Henning SM et al. Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. 2006 J. Nutr. pmid:16772446
Manna S et al. Differential alterations in metabolic pattern of the spliceosomal UsnRNAs during pre-malignant lung lesions induced by benzo(a)pyrene: modulation by tea polyphenols. 2006 Mol. Cell. Biochem. pmid:16718374
Mukai K et al. Structure-activity relationship of the tocopherol-regeneration reaction by catechins. 2005 Free Radic. Biol. Med. pmid:15808422
Yao L et al. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). 2005 J. Agric. Food Chem. pmid:16076137
Kumar NS and Rajapaksha M Separation of catechin constituents from five tea cultivars using high-speed counter-current chromatography. 2005 J Chromatogr A pmid:16078712
Mukai K et al. Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. 2005 Free Radic. Biol. Med. pmid:16109305
Ikeda I et al. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. 2005 J. Nutr. pmid:15671206
Babich H et al. Differential in vitro cytotoxicity of (-)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. 2005 Toxicol In Vitro pmid:15649637
Chen D et al. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies. 2005 Biochem. Pharmacol. pmid:15857617
Nakamuta M et al. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells. 2005 Int. J. Mol. Med. pmid:16142404
Anger DL et al. Heteroactivation of cytochrome P450 1A1 by teas and tea polyphenols. 2005 Br. J. Pharmacol. pmid:15895106
Kadowaki M et al. Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes. 2005 Biol. Pharm. Bull. pmid:16079503
Strobel P et al. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. 2005 Biochem. J. pmid:15469417
Feucht W et al. Flavanols in somatic cell division and male meiosis of tea (Camellia sinensis) anthers. 2005 Plant Biol (Stuttg) pmid:15822012
Taniguchi S et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. 2005 J. Biol. Chem. pmid:15611092
Agusta A et al. Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. 2005 Chem. Pharm. Bull. pmid:16327190
Tsang C et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. 2005 Br. J. Nutr. pmid:16115350
Huang CC et al. Protective effects of (-)-epicatechin-3-gallate on UVA-induced damage in HaCaT keratinocytes. 2005 Arch. Dermatol. Res. pmid:15726391
Navarro-Perán E et al. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies. 2005 Biochemistry pmid:15895994
Ikeda I et al. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. 2005 Biosci. Biotechnol. Biochem. pmid:15914933
Anderson JC et al. Synthesis and antibacterial activity of hydrolytically stable (-)-epicatechin gallate analogues for the modulation of beta-lactam resistance in Staphylococcus aureus. 2005 Bioorg. Med. Chem. Lett. pmid:15863332
El Bedoui J et al. Catechins prevent vascular smooth muscle cell invasion by inhibiting MT1-MMP activity and MMP-2 expression. 2005 Cardiovasc. Res. pmid:15885676
Yamazaki T et al. Biosynthesized tea polyphenols inactivate Chlamydia trachomatis in vitro. 2005 Antimicrob. Agents Chemother. pmid:15917555
Liu S et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. 2005 Biochim. Biophys. Acta pmid:15823507
Song JM et al. Antiviral effect of catechins in green tea on influenza virus. 2005 Antiviral Res. pmid:16137775
Zhang L et al. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. 2004 Int J Pharm pmid:15541906
Hayakawa F et al. Prooxidative activities of tea catechins in the presence of Cu2+. 2004 Biosci. Biotechnol. Biochem. pmid:15388955
Kaszkin M et al. Unravelling green tea's mechanisms of action: more than meets the eye. 2004 Mol. Pharmacol. pmid:14722232
Wan SB et al. Study of the green tea polyphenols catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) as proteasome inhibitors. 2004 Bioorg. Med. Chem. pmid:15186836
Baek SJ et al. Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. 2004 Carcinogenesis pmid:15308587
Chen L et al. Effect of tea catechins on the change of glutathione levels caused by Pb(++) in PC12 cells. 2004 Chem. Res. Toxicol. pmid:15257617
Kapoor M et al. Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. 2004 Am. J. Pathol. pmid:15215184
Stapleton PD et al. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. 2004 Int. J. Antimicrob. Agents pmid:15120724
Legssyer A et al. Tannins and catechin gallate mediate the vasorelaxant effect of Arbutus unedo on the rat isolated aorta. 2004 Phytother Res pmid:15597331
Zhong Z et al. Polyphenols from Camellia sinenesis prevent primary graft failure after transplantation of ethanol-induced fatty livers from rats. 2004 Free Radic. Biol. Med. pmid:15110390
Chu KO et al. Determination of catechins and catechin gallates in tissues by liquid chromatography with coulometric array detection and selective solid phase extraction. 2004 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:15380714
Fujimura Y et al. A difference between epigallocatechin-3-gallate and epicatechin-3-gallate on anti-allergic effect is dependent on their distinct distribution to lipid rafts. 2004 Biofactors pmid:15630184
Zhou YD et al. Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. 2004 J. Nat. Prod. pmid:15620252
Crespy V et al. Glucuronidation of the green tea catechins, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, by rat hepatic and intestinal microsomes. 2004 Free Radic. Res. pmid:15621722
Gibbons S et al. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. 2004 Planta Med. pmid:15643566
Joiner A et al. Ellipsometry analysis of the in vitro adsorption of tea polyphenols onto salivary pellicles. 2004 Eur. J. Oral Sci. pmid:15560834
Arakawa H et al. Role of hydrogen peroxide in bactericidal action of catechin. 2004 Biol. Pharm. Bull. pmid:14993788
Yokozawa T et al. (-)-Epicatechin 3-O-gallate ameliorates the damages related to peroxynitrite production by mechanisms distinct from those of other free radical inhibitors. 2004 J. Pharm. Pharmacol. pmid:15005882
Okamoto M et al. Inhibitory effect of green tea catechins on cysteine proteinases in Porphyromonas gingivalis. 2004 Oral Microbiol. Immunol. pmid:14871352
Konishi Y et al. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers. 2003 J. Agric. Food Chem. pmid:14640574
Ikeda I et al. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. 2003 J. Agric. Food Chem. pmid:14640575
Goodin MG and Rosengren RJ Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse. 2003 Toxicol. Sci. pmid:14600287