(+)-Catechin 3-Gallate

(+)-Catechin 3-Gallate is a lipid of Polyketides (PK) class. (+)-catechin 3-gallate is associated with abnormalities such as Epilepsy and Megalencephaly. The involved functions are known as Docking, Drug Interactions, inhibitors, Oxidation and Inflammation Process. (+)-catechin 3-gallate often locates in Solitary microtubule component of centriole or axonemal complex, Palmar surface, Glial and peritoneal. The associated genes with (+)-Catechin 3-Gallate are Homologous Gene and TSC1 gene.

Cross Reference

Introduction

To understand associated biological information of (+)-Catechin 3-Gallate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with (+)-Catechin 3-Gallate?

(+)-Catechin 3-Gallate is suspected in Epilepsy, Megalencephaly and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (+)-Catechin 3-Gallate

MeSH term MeSH ID Detail
Cicatrix D002921 9 associated lipids
Total 1

PubChem Associated disorders and diseases

What pathways are associated with (+)-Catechin 3-Gallate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with (+)-Catechin 3-Gallate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with (+)-Catechin 3-Gallate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with (+)-Catechin 3-Gallate?

There are no associated biomedical information in the current reference collection.

What genes are associated with (+)-Catechin 3-Gallate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with (+)-Catechin 3-Gallate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with (+)-Catechin 3-Gallate

Download all related citations
Per page 10 20 50 100 | Total 372
Authors Title Published Journal PubMed Link
Ishii T et al. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column. 2010 Mol Nutr Food Res pmid:20013883
Stapleton PD et al. The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. 2007 Microbiology (Reading, Engl.) pmid:17600054
Cunha CA et al. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet. 2013 Mediators Inflamm. pmid:23431242
Thephinlap C et al. Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. 2007 Med Chem pmid:17504202
Ishizu T et al. Diastereomeric difference of inclusion modes between (-)-epicatechin gallate, (-)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent. 2008 Magn Reson Chem pmid:18318450
Van Dyke K et al. Green tea extract and its polyphenols markedly inhibit luminol-dependent chemiluminescence activated by peroxynitrite or SIN-1. 2000 Jan-Feb Luminescence pmid:10660664
Coyle CH et al. Antioxidant effects of green tea and its polyphenols on bladder cells. 2008 Life Sci. pmid:18544457
Zhang A et al. Inhibitory effects of jasmine green tea epicatechin isomers on free radical-induced lysis of red blood cells. 1997 Life Sci. pmid:9244364
Hirao K et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. 2010 Life Sci. pmid:20176036
Annabi B et al. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. 2007 Leuk. Res. pmid:17081606