Epicatechin-3-gallate

Epicatechin-3-gallate is a lipid of Polyketides (PK) class. Epicatechin-3-gallate is associated with abnormalities such as Epilepsy and Megalencephaly. The involved functions are known as Docking, Drug Interactions, inhibitors, Oxidation and Inflammation Process. Epicatechin-3-gallate often locates in Solitary microtubule component of centriole or axonemal complex, Palmar surface, Glial and peritoneal. The associated genes with Epicatechin-3-gallate are Homologous Gene and TSC1 gene.

Cross Reference

Introduction

To understand associated biological information of Epicatechin-3-gallate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Epicatechin-3-gallate?

Epicatechin-3-gallate is suspected in Epilepsy, Megalencephaly and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Epicatechin-3-gallate

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Cicatrix D002921 9 associated lipids
Total 2

PubChem Associated disorders and diseases

What pathways are associated with Epicatechin-3-gallate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Epicatechin-3-gallate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Epicatechin-3-gallate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

What genes are associated with Epicatechin-3-gallate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Epicatechin-3-gallate

Download all related citations
Per page 10 20 50 100 | Total 348
Authors Title Published Journal PubMed Link
Tu HC et al. Epicatechin gallate decreases the viability and subsequent embryonic development of mouse blastocysts. 2010 Taiwan J Obstet Gynecol pmid:20708524
Sukhthankar M et al. A potential proliferative gene, NUDT6, is down-regulated by green tea catechins at the posttranscriptional level. 2010 J. Nutr. Biochem. pmid:19157820
Hosokawa Y et al. Catechins inhibit CXCL10 production from oncostatin M-stimulated human gingival fibroblasts. 2010 J. Nutr. Biochem. pmid:19616927
Kim HJ et al. Epicatechin gallate suppresses oxidative stress-induced MUC5AC overexpression by interaction with epidermal growth factor receptor. 2010 Am. J. Respir. Cell Mol. Biol. pmid:19855084
Bernal P et al. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2. 2010 J. Biol. Chem. pmid:20516078
Jackson JK et al. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. 2010 J Mater Sci Mater Med pmid:20162329
Ferrer-Gallego R et al. Statistical correlation between flavanolic composition, colour and sensorial parameters in grape seed during ripening. 2010 Anal. Chim. Acta pmid:20103139
Soe WM et al. In vitro drug interactions of gallates with antibiotics in Staphylococcus Aureus. 2010 Front Biosci (Elite Ed) pmid:20036910
Minoda K et al. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin. 2010 J. Nutr. Sci. Vitaminol. pmid:21228505
Nakamura H et al. Green tea catechin inhibits lipopolysaccharide-induced bone resorption in vivo. 2010 J. Periodont. Res. pmid:19602116
Cao P et al. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship. 2010 Chem. Res. Toxicol. pmid:20218540
Korte G et al. Tea catechins' affinity for human cannabinoid receptors. 2010 Phytomedicine pmid:19897346
Ishii T et al. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column. 2010 Mol Nutr Food Res pmid:20013883
Jun X et al. Separation of major catechins from green tea by ultrahigh pressure extraction. 2010 Int J Pharm pmid:19874878
Feng W et al. Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1). 2010 Biochem. Pharmacol. pmid:20471964
Manna S et al. Tea polyphenols can restrict benzo[a]pyrene-induced lung carcinogenesis by altered expression of p53-associated genes and H-ras, c-myc and cyclin D1. 2009 J. Nutr. Biochem. pmid:18656336
Maurya PK and Rizvi SI Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. 2009 Nat. Prod. Res. pmid:18846469
Kwak H et al. Flavonoids inhibit the AU-rich element binding of HuC. 2009 BMB Rep pmid:19192392
Ishii T et al. Catechol type polyphenol is a potential modifier of protein sulfhydryls: development and application of a new probe for understanding the dietary polyphenol actions. 2009 Chem. Res. Toxicol. pmid:19743802
Park JH et al. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. 2009 J. Physiol. Pharmacol. pmid:20065503