Epicatechin-3-gallate

Epicatechin-3-gallate is a lipid of Polyketides (PK) class. Epicatechin-3-gallate is associated with abnormalities such as Epilepsy and Megalencephaly. The involved functions are known as Docking, Drug Interactions, inhibitors, Oxidation and Inflammation Process. Epicatechin-3-gallate often locates in Solitary microtubule component of centriole or axonemal complex, Palmar surface, Glial and peritoneal. The associated genes with Epicatechin-3-gallate are Homologous Gene and TSC1 gene.

Cross Reference

Introduction

To understand associated biological information of Epicatechin-3-gallate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Epicatechin-3-gallate?

Epicatechin-3-gallate is suspected in Epilepsy, Megalencephaly and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Epicatechin-3-gallate

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Cicatrix D002921 9 associated lipids
Total 2

PubChem Associated disorders and diseases

What pathways are associated with Epicatechin-3-gallate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Epicatechin-3-gallate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Epicatechin-3-gallate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

What genes are associated with Epicatechin-3-gallate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Epicatechin-3-gallate

Download all related citations
Per page 10 20 50 100 | Total 348
Authors Title Published Journal PubMed Link
Hosokawa Y et al. Catechins inhibit CCL20 production in IL-17A-stimulated human gingival fibroblasts. 2009 Cell. Physiol. Biochem. pmid:19910679
Ishii T et al. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column. 2010 Mol Nutr Food Res pmid:20013883
Soe WM et al. In vitro drug interactions of gallates with antibiotics in Staphylococcus Aureus. 2010 Front Biosci (Elite Ed) pmid:20036910
Park JH et al. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. 2009 J. Physiol. Pharmacol. pmid:20065503
Ferrer-Gallego R et al. Statistical correlation between flavanolic composition, colour and sensorial parameters in grape seed during ripening. 2010 Anal. Chim. Acta pmid:20103139
Jackson JK et al. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. 2010 J Mater Sci Mater Med pmid:20162329
Hirao K et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. 2010 Life Sci. pmid:20176036
Cao P et al. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship. 2010 Chem. Res. Toxicol. pmid:20218540
Iwasaki M et al. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case-control study. 2010 Breast Cancer Res. Treat. pmid:20440552
Hosokawa Y et al. Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts. 2010 Mol Nutr Food Res pmid:20461739
Feng W et al. Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1). 2010 Biochem. Pharmacol. pmid:20471964
Nakanishi T et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. 2010 Eur. J. Oral Sci. pmid:20487003
Bernal P et al. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2. 2010 J. Biol. Chem. pmid:20516078
Duhon D et al. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. 2010 Mol. Carcinog. pmid:20623641
Tu HC et al. Epicatechin gallate decreases the viability and subsequent embryonic development of mouse blastocysts. 2010 Taiwan J Obstet Gynecol pmid:20708524
Abib RT et al. Genoprotective effects of the green tea-derived polyphenol/epicatechin gallate in C6 astroglial cells. 2010 J Med Food pmid:20828315
Jiang F et al. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. 2010 Clin. Immunol. pmid:20832370
Maruyama T et al. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. 2011 Arch. Oral Biol. pmid:20869695
Schantz M et al. Metabolism of green tea catechins by the human small intestine. 2010 Biotechnol J pmid:20931601
Rodríguez-Ramiro I et al. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. 2011 Eur J Nutr pmid:21046126