Epicatechin-3-gallate

Epicatechin-3-gallate is a lipid of Polyketides (PK) class. Epicatechin-3-gallate is associated with abnormalities such as Epilepsy and Megalencephaly. The involved functions are known as Docking, Drug Interactions, inhibitors, Oxidation and Inflammation Process. Epicatechin-3-gallate often locates in Solitary microtubule component of centriole or axonemal complex, Palmar surface, Glial and peritoneal. The associated genes with Epicatechin-3-gallate are Homologous Gene and TSC1 gene.

Cross Reference

Introduction

To understand associated biological information of Epicatechin-3-gallate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Epicatechin-3-gallate?

Epicatechin-3-gallate is suspected in Epilepsy, Megalencephaly and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Epicatechin-3-gallate

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Cicatrix D002921 9 associated lipids
Total 2

PubChem Associated disorders and diseases

What pathways are associated with Epicatechin-3-gallate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Epicatechin-3-gallate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Epicatechin-3-gallate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

What genes are associated with Epicatechin-3-gallate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Epicatechin-3-gallate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Epicatechin-3-gallate

Download all related citations
Per page 10 20 50 100 | Total 348
Authors Title Published Journal PubMed Link
Lin CL et al. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. 2007 J. Lipid Res. pmid:17720960
Katiyar SK et al. Inhibition of 12-O-tetradecanoylphorbol-13-acetate and other skin tumor-promoter-caused induction of epidermal interleukin-1 alpha mRNA and protein expression in SENCAR mice by green tea polyphenols. 1995 J. Invest. Dermatol. pmid:7665919
Ryan P and Hynes MJ The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). 2007 J. Inorg. Biochem. pmid:17257683
Ghosh KS et al. Studies on the interaction of copper complexes of (-)-epicatechin gallate and (-)-epigallocatechin gallate with calf thymus DNA. 2008 J. Inorg. Biochem. pmid:18541305
Liu TT and Yang TS Effects of water-soluble natural antioxidants on photosensitized oxidation of conjugated linoleic acid in an oil-in-water emulsion system. 2008 J. Food Sci. pmid:18460119
Yuda N et al. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. 2012 J. Food Sci. pmid:23106349
Chiu CT et al. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy. 2015 J. Food Sci. pmid:25694272
Tagashira T et al. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate. 2012 J. Food Sci. pmid:22938538
Chung JH et al. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins. 2013 J. Food Sci. pmid:23551173
El-Hawary SA et al. A profile of bioactive compounds of Rumex vesicarius L. 2011 J. Food Sci. pmid:22417584